Young's modulus estimation of bovine lens ex-vivo using a laser-induced microbubble under impulsive acoustic radiation force

2011 ◽  
Vol 130 (4) ◽  
pp. 2423-2423 ◽  
Author(s):  
Sangpil Yoon ◽  
Salavat Aglyamov ◽  
Andrei Karpiouk ◽  
Stanislav Emelianov
2021 ◽  
pp. 153537022110618
Author(s):  
Xiao Han ◽  
Yubao Zhang ◽  
Yirui Zhu ◽  
Yanzhi Zhao ◽  
Hongwei Yang ◽  
...  

Biomechanical properties of corneal scar are strongly correlated with many corneal diseases and some types of corneal surgery, however, there is no elasticity information available about corneal scar to date. Here, we proposed an acoustic radiation force optical coherence elastography system to evaluate corneal scar elasticity. Elasticity quantification was first conducted on ex vivo rabbit corneas, and the results validate the efficacy of our system. Then, experiments were performed on an ex vivo human scarred cornea, where the structural features, the elastic wave propagations, and the corresponding Young’s modulus of both the scarred region and the normal region were achieved and based on this, 2D spatial distribution of Young’s modulus of the scarred cornea was depicted. Up to our knowledge, we realized the first elasticity quantification of corneal scar, which may provide a potent tool to promote clinical research on the disorders and surgery of the cornea.


Author(s):  
Megan L. Kogit ◽  
Baoxiang Shan ◽  
Assimina A. Pelegri

We have developed a solid mechanics model of nearly incompressible, viscoelastic soft tissue for finite element analysis (FEA) in MATLAB 7.2. Newmark’s method was used to solve the finite element equations of motion for our model. The solution to our dynamic problem was validated with a transient dynamic analysis in ANSYS 10.0. We further demonstrated that our MATLAB FEA qualitatively agrees with those results observed with acoustic radiation force methods on soft tissues and tissue-mimicking materials. We showed that changes in Young’s modulus and the damping coefficient affect the displacement amplitude and phase shift of the response data in the same manner: An increase in Young’s modulus or damping coefficient decreases both the displacement amplitude and response lag. Future work on this project will involve frequency analysis on response data and studying the initial transient region to help uncouple the effects of Young’s modulus and damping coefficient on response characteristics. This will get us one step closer to being able to explicitly determine Young’s modulus and the damping coefficient from the temporal response data of acoustic radiation force methods, which is the ultimate goal of our project.


2005 ◽  
Vol 27 (2) ◽  
pp. 75-88 ◽  
Author(s):  
Mark L. Palmeri ◽  
Kristin D. Frinkley ◽  
Liang Zhai ◽  
Marcia Gottfried ◽  
Rex C. Bentley ◽  
...  

The evaluation of lesions in the gastrointestinal (GI) tract using ultrasound can suffer from poor contrast between healthy and diseased tissue. Acoustic Radiation Force Impulse (ARFI) imaging provides information about the mechanical properties of tissue using brief, high-intensity, focused ultrasound to generate radiation force and ultrasonic correlation-based methods to track the resulting tissue displacement. Using conventional linear arrays, ARFI imaging has shown improved contrast over B-mode images when applied to solid masses in the breast and liver. The purpose of this work is to (1) investigate the potential for ARFI imaging to provide improvements over conventional B-mode imaging of GI lesions and (2) demonstrate that ARFI imaging can be performed with an endocavity probe. ARFI images of an adenocarcinoma of the gastroesophageal (GE) junction, status-post chemotherapy and radiation treatment, demonstrate better contrast between healthy and fibrotic/malignant tissue than standard B-mode images. ARFI images of healthy gastric, esophageal, and colonic tissue specimens differentiate normal anatomic tissue layers (i.e., mucosal, muscularis and adventitial layers), as confirmed by histologic evaluation. ARFI imaging of ex vivo colon and small bowel tumors portray interesting contrast and structure that are not as well defined in B-mode images. An endocavity probe created ARFI images to a depth of over 2 cm in tissue-mimicking phantoms, with maximum displacements of 4 μm. These findings support the clinical feasibility of endocavity ARFI imaging to guide diagnosis and staging of disease processes in the GI tract.


Ultrasonics ◽  
2017 ◽  
Vol 74 ◽  
pp. 161-166 ◽  
Author(s):  
Yanrong Guo ◽  
Changfeng Dong ◽  
Haoming Lin ◽  
Xinyu Zhang ◽  
Huiying Wen ◽  
...  

2010 ◽  
Vol 36 (4) ◽  
pp. 576-588 ◽  
Author(s):  
Liang Zhai ◽  
John Madden ◽  
Wen-Chi Foo ◽  
Mark L. Palmeri ◽  
Vladimir Mouraviev ◽  
...  

2002 ◽  
Vol 24 (3) ◽  
pp. 129-138 ◽  
Author(s):  
Kathryn Nightingale ◽  
Rex Bentley ◽  
Gregg Trahey

Acoustic Radiation Force Impulse (ARFI) imaging is a method for characterizing local variations in tissue mechanical properties. In this method, a single ultrasonic transducer array is used to both apply temporally short localized radiation forces within tissue and to track the resulting displacements through time. In an ongoing study of the response of tissue to temporally short radiation force excitation, ARFI datasets have been obtained of ex vivo tissues under various focal configurations. The goal of this paper is to report observations of the response of tissue to radiation force and discuss the implications of these results in the construction of clinical imaging devices.


Sign in / Sign up

Export Citation Format

Share Document