Dynamic Analysis of Soft Tissue Viscoelasticity Under Ultrasonic Radiation Force Using FEM

Author(s):  
Megan L. Kogit ◽  
Baoxiang Shan ◽  
Assimina A. Pelegri

We have developed a solid mechanics model of nearly incompressible, viscoelastic soft tissue for finite element analysis (FEA) in MATLAB 7.2. Newmark’s method was used to solve the finite element equations of motion for our model. The solution to our dynamic problem was validated with a transient dynamic analysis in ANSYS 10.0. We further demonstrated that our MATLAB FEA qualitatively agrees with those results observed with acoustic radiation force methods on soft tissues and tissue-mimicking materials. We showed that changes in Young’s modulus and the damping coefficient affect the displacement amplitude and phase shift of the response data in the same manner: An increase in Young’s modulus or damping coefficient decreases both the displacement amplitude and response lag. Future work on this project will involve frequency analysis on response data and studying the initial transient region to help uncouple the effects of Young’s modulus and damping coefficient on response characteristics. This will get us one step closer to being able to explicitly determine Young’s modulus and the damping coefficient from the temporal response data of acoustic radiation force methods, which is the ultimate goal of our project.

2021 ◽  
pp. 153537022110618
Author(s):  
Xiao Han ◽  
Yubao Zhang ◽  
Yirui Zhu ◽  
Yanzhi Zhao ◽  
Hongwei Yang ◽  
...  

Biomechanical properties of corneal scar are strongly correlated with many corneal diseases and some types of corneal surgery, however, there is no elasticity information available about corneal scar to date. Here, we proposed an acoustic radiation force optical coherence elastography system to evaluate corneal scar elasticity. Elasticity quantification was first conducted on ex vivo rabbit corneas, and the results validate the efficacy of our system. Then, experiments were performed on an ex vivo human scarred cornea, where the structural features, the elastic wave propagations, and the corresponding Young’s modulus of both the scarred region and the normal region were achieved and based on this, 2D spatial distribution of Young’s modulus of the scarred cornea was depicted. Up to our knowledge, we realized the first elasticity quantification of corneal scar, which may provide a potent tool to promote clinical research on the disorders and surgery of the cornea.


2015 ◽  
Vol 137 (4) ◽  
pp. 2313-2313
Author(s):  
Benjamin C. Treweek ◽  
Yurii A. Ilinskii ◽  
Evgenia A. Zabolotskaya ◽  
Mark F. Hamilton

2015 ◽  
Author(s):  
Benjamin C. Treweek ◽  
Yurii A. Ilinskii ◽  
Evgenia A. Zabolotskaya ◽  
Mark F. Hamilton

Sign in / Sign up

Export Citation Format

Share Document