Acoustic wave propagation through porous media with arbitrary pore size distributions

1988 ◽  
Vol 83 (5) ◽  
pp. 1744-1751 ◽  
Author(s):  
Tokuo Yamamoto ◽  
Altan Turgut
2013 ◽  
Vol 21 (3) ◽  
pp. 238-244
Author(s):  
J. I. Osypik ◽  
N. I. Pushkina ◽  
Ya. M. Zhileikin

Geophysics ◽  
1991 ◽  
Vol 56 (4) ◽  
pp. 424-435 ◽  
Author(s):  
Siamak Hassanzadeh

An acoustic modeling method with possible application to enhanced hydrocarbon reservoir characterization is presented. The method involves numerical simulation of two‐dimensional (2‐D), low‐frequency transient acoustic‐wave propagation in porous media and is based on the explicit finite‐difference formulation of Biot’s system of equations in a fluid‐saturated poroacoustic medium. The scheme is second‐order accurate in space and time. Synthetic seismograms computed using this approach indicate that transient acoustic‐wave propagation in unbounded fluid‐filled porous media and in the presence of fluid viscosity closely mimics that in an equivalent nonporous (single‐phase) solid. However, in the presence of heterogeneities, such as layering, inclusions, and discontinuities, the results show that acoustic‐wave characteristics are affected by spatial variations in reservoir parameters such as porosity, permeability, and fluid content as well as the fluid‐solid interaction. The effects of permeability and fluid viscosity are discernible in dispersion and dissipation of the compressional wave, whereas porosity affects the compressional velocity as well. The results of this study suggest that no equivalent single‐phase model can adequately describe the effects of permeability and porosity on seismic waves propagating through heterogeneous fluid‐filled porous media.


Author(s):  
Aimad Oukhlef ◽  
Abdlehak Ambari ◽  
Ste´phane Champmartin ◽  
Antoine Despeyroux

In this paper a new method is presented in order to determine the pore size distribution in a porous media. This original technique uses the non Newtonian yield-pseudo-plastic rheological properties of some fluid flowing through the porous sample. In a first approximation, the very well-known and simple Carman-Kozeny model for porous media is considered. However, despite the use of such a huge simplification, the analysis of the geometry still remains an interesting problem. Then, the pore size distribution can be obtained from the measurement of the total flow rate as a function of the imposed pressure gradient. Using some yield-pseudo-plastic fluid, the mathematical processing of experimental data should give an insight of the pore-size distribution of the studied porous material. The present technique was successfully tested analytically and numerically for classical pore size distributions such as the Gaussian and the bimodal distributions using Bingham or Casson fluids (the technique was also successfully extended to Herschel-Bulkley fluids but the results are not presented in this paper). The simplicity and the cheapness of this method are also its assets.


Sign in / Sign up

Export Citation Format

Share Document