scholarly journals A comparison of spectral magnitude and phase-locking value analyses of the frequency-following response to complex tones

2013 ◽  
Vol 134 (1) ◽  
pp. 384-395 ◽  
Author(s):  
Li Zhu ◽  
Hari Bharadwaj ◽  
Jing Xia ◽  
Barbara Shinn-Cunningham
2021 ◽  
Vol 15 ◽  
Author(s):  
Baoguo Xu ◽  
Leying Deng ◽  
Dalin Zhang ◽  
Muhui Xue ◽  
Huijun Li ◽  
...  

Studying the decoding process of complex grasping movement is of great significance to the field of motor rehabilitation. This study aims to decode five natural reach-and-grasp types using sources of movement-related cortical potential (MRCP) and investigate their difference in cortical signal characteristics and network structures. Electroencephalogram signals were gathered from 40 channels of eight healthy subjects. In an audio cue-based experiment, subjects were instructed to keep no-movement condition or perform five natural reach-and-grasp movements: palmar, pinch, push, twist and plug. We projected MRCP into source space and used average source amplitudes in 24 regions of interest as classification features. Besides, functional connectivity was calculated using phase locking value. Six-class classification results showed that a similar grand average peak performance of 49.35% can be achieved using source features, with only two-thirds of the number of channel features. Besides, source imaging maps and brain networks presented different patterns between each condition. Grasping pattern analysis indicated that the modules in the execution stage focus more on internal communication than in the planning stage. The former stage was related to the parietal lobe, whereas the latter was associated with the frontal lobe. This study demonstrates the superiority and effectiveness of source imaging technology and reveals the spread mechanism and network structure of five natural reach-and-grasp movements. We believe that our work will contribute to the understanding of the generation mechanism of grasping movement and promote a natural and intuitive control of brain–computer interface.


NeuroImage ◽  
2013 ◽  
Vol 74 ◽  
pp. 231-244 ◽  
Author(s):  
Sergul Aydore ◽  
Dimitrios Pantazis ◽  
Richard M. Leahy

2020 ◽  
Vol 59 ◽  
pp. 101882 ◽  
Author(s):  
Zhenhua Yu ◽  
Tian Ma ◽  
Na Fang ◽  
Haixian Wang ◽  
Zhanli Li ◽  
...  

2018 ◽  
Vol 22 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Kaitlyn Casimo ◽  
Fabio Grassia ◽  
Sandra L. Poliachik ◽  
Edward Novotny ◽  
Andrew Poliakov ◽  
...  

Prior studies of functional connectivity following callosotomy have disagreed in the observed effects on interhemispheric functional connectivity. These connectivity studies, in multiple electrophysiological methods and functional MRI, have found conflicting reductions in connectivity or patterns resembling typical individuals. The authors examined a case of partial anterior corpus callosum connection, where pairs of bilateral electrocorticographic electrodes had been placed over homologous regions in the left and right hemispheres. They sorted electrode pairs by whether their direct corpus callosum connection had been disconnected or preserved using diffusion tensor imaging and native anatomical MRI, and they estimated functional connectivity between pairs of electrodes over homologous regions using phase-locking value. They found no significant differences in any frequency band between pairs of electrodes that had their corpus callosum connection disconnected and those that had an intact connection. The authors’ results may imply that the corpus callosum is not an obligatory mediator of connectivity between homologous sites in opposite hemispheres. This interhemispheric synchronization may also be linked to disruption of seizure activity.


Sign in / Sign up

Export Citation Format

Share Document