reach and grasp
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 34)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Jérémy Mouchoux ◽  
Miguel A. Bravo-Cabrera ◽  
Strahinja Dosen ◽  
Arndt F. Schilling ◽  
Marko Markovic

Semi-autonomous (SA) control of upper-limb prostheses can improve the performance and decrease the cognitive burden of a user. In this approach, a prosthesis is equipped with additional sensors (e.g., computer vision) that provide contextual information and enable the system to accomplish some tasks automatically. Autonomous control is fused with a volitional input of a user to compute the commands that are sent to the prosthesis. Although several promising prototypes demonstrating the potential of this approach have been presented, methods to integrate the two control streams (i.e., autonomous and volitional) have not been systematically investigated. In the present study, we implemented three shared control modalities (i.e., sequential, simultaneous, and continuous) and compared their performance, as well as the cognitive and physical burdens imposed on the user. In the sequential approach, the volitional input disabled the autonomous control. In the simultaneous approach, the volitional input to a specific degree of freedom (DoF) activated autonomous control of other DoFs, whereas in the continuous approach, autonomous control was always active except for the DoFs controlled by the user. The experiment was conducted in ten able-bodied subjects, and these subjects used an SA prosthesis to perform reach-and-grasp tasks while reacting to audio cues (dual tasking). The results demonstrated that, compared to the manual baseline (volitional control only), all three SA modalities accomplished the task in a shorter time and resulted in less volitional control input. The simultaneous SA modality performed worse than the sequential and continuous SA approaches. When systematic errors were introduced in the autonomous controller to generate a mismatch between the goals of the user and controller, the performance of SA modalities substantially decreased, even below the manual baseline. The sequential SA scheme was the least impacted one in terms of errors. The present study demonstrates that a specific approach for integrating volitional and autonomous control is indeed an important factor that significantly affects the performance and physical and cognitive load, and therefore these should be considered when designing SA prostheses.


2021 ◽  
Vol 15 ◽  
Author(s):  
Baoguo Xu ◽  
Leying Deng ◽  
Dalin Zhang ◽  
Muhui Xue ◽  
Huijun Li ◽  
...  

Studying the decoding process of complex grasping movement is of great significance to the field of motor rehabilitation. This study aims to decode five natural reach-and-grasp types using sources of movement-related cortical potential (MRCP) and investigate their difference in cortical signal characteristics and network structures. Electroencephalogram signals were gathered from 40 channels of eight healthy subjects. In an audio cue-based experiment, subjects were instructed to keep no-movement condition or perform five natural reach-and-grasp movements: palmar, pinch, push, twist and plug. We projected MRCP into source space and used average source amplitudes in 24 regions of interest as classification features. Besides, functional connectivity was calculated using phase locking value. Six-class classification results showed that a similar grand average peak performance of 49.35% can be achieved using source features, with only two-thirds of the number of channel features. Besides, source imaging maps and brain networks presented different patterns between each condition. Grasping pattern analysis indicated that the modules in the execution stage focus more on internal communication than in the planning stage. The former stage was related to the parietal lobe, whereas the latter was associated with the frontal lobe. This study demonstrates the superiority and effectiveness of source imaging technology and reveals the spread mechanism and network structure of five natural reach-and-grasp movements. We believe that our work will contribute to the understanding of the generation mechanism of grasping movement and promote a natural and intuitive control of brain–computer interface.


2021 ◽  
Vol 15 ◽  
Author(s):  
Baoguo Xu ◽  
Dalin Zhang ◽  
Yong Wang ◽  
Leying Deng ◽  
Xin Wang ◽  
...  

Grasping is one of the most indispensable functions of humans. Decoding reach-and-grasp actions from electroencephalograms (EEGs) is of great significance for the realization of intuitive and natural neuroprosthesis control, and the recovery or reconstruction of hand functions of patients with motor disorders. In this paper, we investigated decoding five different reach-and-grasp movements closely related to daily life using movement-related cortical potentials (MRCPs). In the experiment, nine healthy subjects were asked to naturally execute five different reach-and-grasp movements on the designed experimental platform, namely palmar, pinch, push, twist, and plug grasp. A total of 480 trials per subject (80 trials per condition) were recorded. The MRCPs amplitude from low-frequency (0.3–3 Hz) EEG signals were used as decoding features for further offline analysis. Average binary classification accuracy for grasping vs. the no-movement condition peaked at 75.06 ± 6.8%. Peak average accuracy for grasping vs. grasping conditions of 64.95 ± 7.4% could be reached. Grand average peak accuracy of multiclassification for five grasping conditions reached 36.7 ± 6.8% at 1.45 s after the movement onset. The analysis of MRCPs indicated that all the grasping conditions are more pronounced than the no-movement condition, and there are also significant differences between the grasping conditions. These findings clearly proved the feasibility of decoding multiple reach-and-grasp actions from noninvasive EEG signals. This work is significant for the natural and intuitive BCI application, particularly for neuroprosthesis control or developing an active human–machine interaction system, such as rehabilitation robot.


Author(s):  
Dr. Madhu Yadav* ◽  

Robotic and advanced technology rehabilitation is useful for people with difficulties and deficits in arm and hand movements, walking problems and balance disorders. Robotic technologies are being introduced in the rehabilitation field to support the activity of specialists, doctors and physiotherapists; the future and the challenge of rehabilitation lies precisely in the development of robotics. Robot assists the therapist in administering the most appropriate motor therapy with precision and repeatability modulates the difficulty of the exercise. It allows repetitive task-oriented activities with augmentative feedback capable of inducing brain plasticity. It acquires quantitative information on movement and evaluates the services performed he first, “Arm and Hand”, is used to help the opening and closing movements of the hand. After entering it by hand and forearm, gently guides the patient's shoulder and elbow movements to reach and grasp objects. “Wrist”, on the other hand, interacts with the movements of the wrist and integrates functionally with the “Hand” module.


Author(s):  
Dr. Madhu Yadav ◽  

Robotic and advanced technology rehabilitation is useful for people with difficulties and deficits in arm and hand movements, walking problems and balance disorders. Robotic technologies are being introduced in the rehabilitation field to support the activity of specialists, doctors and physiotherapists; the future and the challenge of rehabilitation lies precisely in the development of robotics. Robot assists the therapist in administering the most appropriate motor therapy with precision and repeatability modulates the difficulty of the exercise. It allows repetitive task-oriented activities with augmentative feedback capable of inducing brain plasticity. It acquires quantitative information on movement and evaluates the services performed he first, “Arm and Hand”, is used to help the opening and closing movements of the hand. After entering it by hand and forearm, gently guides the patient’s shoulder and elbow movements to reach and grasp objects. “Wrist”, on the other hand, interacts with the movements of the wrist and integrates functionally with the “Hand” module.


Author(s):  
Erika Rovini ◽  
Guenda Galperti ◽  
Valeria Manera ◽  
Gianmaria Mancioppi ◽  
Laura Fiorini ◽  
...  

Abstract Background The progressive ageing of the population is leading to an increasing number of people affected by cognitive decline, including disorders in executive functions (EFs), such as action planning. Current procedures to evaluate cognitive decline are based on neuropsychological tests, but novel methods and approaches start to be investigated. Reach-to-grasp (RG) protocols have shown that intentions can influence the EFs of action planning. In this work, we proposed a novel ring-shaped wearable inertial device, SensRing, to measure kinematic parameters during RG and after-grasp (AG) tasks with different end-goals. The aim is to evaluate whether SensRing can characterize the motor performances of people affected by Mild Neurocognitive Disorder (MND) with impairment in EFs. Methods Eight Individuals with dysexecutive MND, named d-MND, were compared to ten older healthy subjects (HC). They were asked to reach and grasp a can with three different intentions: to drink (DRINK), to place it on a target (PLACE), or to pass it to a partner (PASS). Twenty-one kinematic parameters were extracted from SensRing inertial data. Results Seven parameters resulted able to differentiate between HC and d-MND in the RG phase, and 8 features resulted significant in the AG phase. d-MND, indeed, had longer reaction times (in RG PLACE), slower peak velocities (in RG PLACE and PASS, in AG DRINK and PLACE), longer deceleration phases (in all RG and AG DRINK), and higher variability (in RG PLACE, in AG DRINK and PASS). Furthermore, d-MND showed no significant differences among conditions, suggesting that impairments in EFs influence their capabilities in modulating the action planning based on the end-goal. Conclusions Based on this explorative study, the system might have the potential for objectifying the clinical assessment of people affected by d-MND by administering an easy motor test. Although these preliminary results have to be investigated in-depth in a larger sample, the portability, wearability, accuracy, and ease-of use of the system make the SensRing potentially appliable for remote applications at home, including analysis of protocols for neuromotor rehabilitation in patients affected by MND.


2021 ◽  
Author(s):  
Jin Huang ◽  
Guoxin Li ◽  
Qingsheng Meng ◽  
Haisheng Xia ◽  
Yueyue Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document