Finite element modeling for ocean acoustics applications using high performance computing

2018 ◽  
Vol 143 (3) ◽  
pp. 1926-1926
Author(s):  
Marcia J. Isakson
2014 ◽  
Author(s):  
Mehdi Gilaki ◽  
Ilya Avdeev

In this study, we have investigated feasibility of using commercial explicit finite element code LS-DYNA on massively parallel super-computing cluster for accurate modeling of structural impact on battery cells. Physical and numerical lateral impact tests have been conducted on cylindrical cells using a flat rigid drop cart in a custom-built drop test apparatus. The main component of cylindrical cell, jellyroll, is a layered spiral structure which consists of thin layers of electrodes and separator. Two numerical approaches were considered: (1) homogenized model of the cell and (2) heterogeneous (full) 3-D cell model. In the first approach, the jellyroll was considered as a homogeneous material with an effective stress-strain curve obtained through experiments. In the second model, individual layers of anode, cathode and separator were accounted for in the model, leading to extremely complex and computationally expensive finite element model. To overcome limitations of desktop computers, high-performance computing (HPC) techniques on a HPC cluster were needed in order to get the results of transient simulations in a reasonable solution time. We have compared two HPC methods used for this model is shared memory parallel processing (SMP) and massively parallel processing (MPP). Both the homogeneous and the heterogeneous models were considered for parallel simulations utilizing different number of computational nodes and cores and the performance of these models was compared. This work brings us one step closer to accurate modeling of structural impact on the entire battery pack that consists of thousands of cells.


Author(s):  
Dazhong Wu ◽  
Xi Liu ◽  
Steve Hebert ◽  
Wolfgang Gentzsch ◽  
Janis Terpenny

Cloud computing is an innovative computing paradigm that can potentially bridge the gap between increasing computing demands in computer aided engineering (CAE) applications and limited scalability, flexibility, and agility in traditional computing paradigms. In light of the benefits of cloud computing, high performance computing (HPC) in the cloud has the potential to enable users to not only accelerate computationally expensive CAE simulations (e.g., finite element analysis), but also to reduce costs by utilizing on-demand and scalable cloud computing resources. The objective of this research is to evaluate the performance of running a large finite element simulation in a public cloud. Specifically, an experiment is performed to identify individual and interactive effects of several factors (e.g., CPU core count, memory size, solver computational rate, and input/output rate) on run time using statistical methods. Our experimental results have shown that the performance of HPC in the cloud is sufficient for the application of a large finite element analysis, and that run time can be optimized by properly selecting a configuration of CPU, memory, and interconnect.


Sign in / Sign up

Export Citation Format

Share Document