Ankle Flexibility and Jump Landing Mechanics: Implications for ACL Injury Risk

2011 ◽  
Vol 16 (6) ◽  
pp. 14-16 ◽  
Author(s):  
Matthew Hamilton ◽  
James R. Velasquez
2008 ◽  
Vol 40 (Supplement) ◽  
pp. S157
Author(s):  
Michael J. Duffey ◽  
Michele L. Duffey ◽  
Donna Vargas ◽  
Kenneth Cameron ◽  
Sally Mountcastle ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Dhruv Gupta ◽  
Jeffrey A. Reinbolt ◽  
Cyril J. Donnelly

Knee abduction/adduction moment and knee internal rotation moment are known surrogate measures of anterior cruciate ligament (ACL) load during tasks like sidestepping and single-leg landing. Previous experimental literature has shown that a variety of kinematic strategies are associated or correlated with ACL injury risk; however, the optimal kinematic strategies needed to reduce peak knee moments and ACL injury are not well understood. To understand the complex, multifaceted kinematic factors underpinning ACL injury risk and to optimize kinematics to prevent the ACL injury, a musculoskeletal modeling and simulation experimental design was used. A 14-segment, 37-degree-of-freedom, dynamically consistent skeletal model driven by force/torque actuators was used to simulate whole-body single-leg jump landing kinematics. Using the residual reduction algorithm in OpenSim, whole-body kinematics were optimized to reduce the peak knee abduction/adduction and internal/external rotation moments simultaneously. This optimization was repeated across 30 single-leg jump landing trials from 10 participants. The general optimal kinematic strategy was to bring the knee to a more neutral alignment in the transverse plane and frontal plane (featured by reduced hip adduction angle and increased knee adduction angle). This optimized whole-body kinematic strategy significantly reduced the peak knee abduction/adduction and internal rotation moments, transferring most of the knee load to the hip.


2013 ◽  
Vol 60 ◽  
pp. 300-306
Author(s):  
Phillis S.P. Teng ◽  
K.F. Leong ◽  
P.Y. Huang ◽  
J. McLaren

2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0012
Author(s):  
Sean Higinbotham ◽  
Ryan S. Wexler ◽  
Danny Blake ◽  
Carlie Harrison ◽  
Justin Hollenbeck ◽  
...  

Background: Scientific studies have shown female soccer athletes to be 3 times more likely to injure their anterior cruciate ligament (ACL) than their male counterparts and the majority of these injuries are from a non-contact mechanism. The biomechanical factors of this phenomenon have been extensively studied in a laboratory-based setting, but there has been little progress in reducing the incidence of ACL injury in young female athletes. It is plausible, therefore, to suggest that the biomechanical improvements noted in a laboratory-based setting do not directly translate to a field-based setting. Preventive neuromuscular training programs are typically field-based and have been shown to be an effective intervention for reducing ACL injury risk by improving dynamic, frontal-plane knee stability. However, these programs are time consuming and prone to compliance and implementation issues. For these reasons, researchers have attempted to identify the minimum viable training program or wearable device that can be studied in the field using video cameras to determine their influence on movement-related risk factors for ACL injury. Purpose: The aim of this study was to evaluate the effectiveness of a wearable neuromuscular device (WND) with or without the addition of a field-based, preventive neuromuscular training program on jump-landing risk assessment in young female soccer athletes. Methods: Thirty-nine female soccer players (161.0 +/- 6.6 cm; 49.4 kg +/- 5.9; 13.3 +/- 0.5 y) from two different teams in a local soccer club volunteered to participate in this study. Team 1 (n = 25) performed a 6-week, field-based NMT program while wearing a WND. The NMT was instructed by a trained exercise specialist. The NMT program was divided into three, two-week blocks of progressively increasing levels of exercise complexity and intensity focused on improving the strength and activation behavior of the trunk, hip and thigh muscles. Field-based movement testing was performed in the first week before training began (pre-test) and in the seventh week upon completion of the NMT program (post-test). During testing video cameras recorded a jump-landing task in the frontal and sagittal planes. The Landing Error Scoring System (LESS) and a novel version of the LESS (LESS-RMC) was used to asses movement quality related to ACL injury risk. Team 2 (n=14) wore the WND for an equal amount of athletic exposures over 7 weeks but did not perform the NMT program. Four different raters were recruited to visually score all jump landing trials using the two different rating protocols during the pre-test and post-test. For each visual assessment (LESS & LESS-RMC) a repeated measures ANOVA was conducted to explore within group (test) and between group (team) differences. Results: Repeated measure ANOVA results for the LESS score scale indicated a significant within factor difference in pretest and post test scores F(7.398, 27.533) = 8.598, P < 0.05. Pretest scores for team 1 (6.18 +/- 1.68) and team 2 (6.95 +/- 0.94) both saw a significant reduction in ACL risk scores to 5.44 +/- 1.70 and 6.31 +/- 1.75, respectively. ANOVA results for the LESS-RMC scale also indicated a significant within factor difference in pretest and posttests F(6.756, 35.624) = 6.069, p < 0.05. Pretest scores for Team 1 (6.02 +/- 1.99) and Team 2 (6.49 +/- 1.33) both saw a significant reduction in ACL risk scores to 5.10 +/- 1.77 and 6.09 +/- 1.50, respectively. ANOVA results revealed no significant differences between team scores for the LESS (F(0.031,27.533) = 0.036, p > 0.05) or LESS-RMC (F(1.053,35.624) = .946, p > 0.05) scales. Conclusion: The results reveal that the NMT program utilized in this study had no statistically significant additive effect on the visual risk assessment scores for Team 1 compared to Team 2, who had no NMT intervention and only wore the WND. Collectively, these results suggest that simply wearing a WND during 6 weeks of practice may be a less evasive and cheaper alternative to a NMT program.


2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0009
Author(s):  
Ryan S. Wexler ◽  
Sean Higinbotham ◽  
Danny Blake ◽  
Carlie Harrison ◽  
Justin Hollenbeck ◽  
...  

BACKGROUND Several biomechanical deficits have been shown to increase non-contact knee injury risk of the anterior cruciate ligament (ACL). The Landing Error Scoring System (LESS) is a clinical assessment tool that has been successfully used to predict the individuals that are at a high risk for injury and evaluate changes in landing technique after participation in a neuromuscular preventive training program. The LESS-RT is a shortened version of the LESS and is a method to score landing technique without the use of video. The current study proposes a new tool for the evaluation of landing technique and ACL injury risk that blends the LESS and LESS-RT protocols but emphasizes the movement features that contribute to high knee valgus moments including movement asymmetry. The LESS-RMC (Rocky Mountain Consortium) consists of evaluating 11 comprehensive landing errors that are related to ACL injury risk. Consolidating questions pertaining to the opposite ends of joint motion such as “toe in” and “toe out” into “maximum foot rotation position” and adding a global asymmetry score were performed to reduce the time demands for evaluation yet capture the salient factors of the LESS; whereas the penalty for knee valgus severity was pulled from the LESS-RT but implemented for both knees in the new LESS-RMC to ultimately stratify knee injury risk during the jump landing task. The purpose of this study was to determine the reliability of the new LESS-RMC assessment tool. METHODS Thirty-seven, elite female soccer athletes (13.2 +/- 0.4 y) performed three drop-jumps from a height of 30 cm. Front and side views of the landing were recorded with digital video cameras. Movement quality was rated by 4 researchers evaluating 17 components of the landing with the LESS and a modified, 11 component version of the LESS (LESS-RMC). The 4 raters were novel to the evaluation of both scoring systems. Each rater was trained how to score each test and was instructed to evaluate the landing trials from the first 10 participants. After a group video review and discussion, the raters repeated the scoring procedures for the same 10 participants 48 hours after the original review. After another 48 hours, the raters evaluated the landing trials for all 37 participants (111 trials). Inter-rater reliability of the LESS and LESS-RMC were determined using the ICC (3,1) equations and the output from a two-way ANOVA (SPSS, version 25). RESULTS The mean LESS score was 6.45 +/- 0.55 (rater 1, 6.42; rater 2, 7.15; rater 3, 5.79; rater 4, 6.45). The ICC agreement between raters of scoring the LESS was .389 whereas the ICC agreement for the mean of the four raters was .718. The ICC for scoring consistency was .382 and Cronbach’s a was .735. The mean LESS-RMC score was 6.19 +/- 0.74 (rater 1, 5.65; rater 2, 6.99; rater 3, 5.48; rater 4, 6.64). The ICC agreement of scoring the LESS-RMC was .585 whereas the ICC agreement for the mean of the four raters was .849. The ICC for scoring consistency was .574 and Cronbach’s a was .884. CONCLUSION On average, the raters scored the LESS and the LESS-RMC with moderate reliability across the group of athletes. The LESS-RMC was scored with greater reliability than the LESS for this group of relatively novice raters. This is likely due to the simplification of the overall protocol in terms of quantity of questions, the ability of a novel rater to understand scenarios which elicit specific scores and the clear separation of body segments (e.g. hip and trunk flexion). In conjunction with this, it was reported by the raters that LESS-RMC was less redundant and more effective at assessing crucial aspects of a jump landing pattern. Overall, LESS RMC was objectively and subjectively more reliable and easier to use than the LESS for the four raters involved in this study. It is concluded that the LESS-RMC is a quick, easy and reliable clinical assessment tool that may be used to stratify individuals who may be at risk for ACL injury.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 997
Author(s):  
Alessandro de Sire ◽  
Nicola Marotta ◽  
Andrea Demeco ◽  
Lucrezia Moggio ◽  
Pasquale Paola ◽  
...  

Anterior cruciate ligament (ACL) injury incidence is often underestimated in tennis players, who are considered as subjects conventionally less prone to knee injuries. However, evaluation of the preactivation of knee stabilizer muscles by surface electromyography (sEMG) showed to be a predictive value in the assessment of the risk of ACL injury. Therefore, this proof-of-concept study aimed at evaluating the role of visual input on the thigh muscle preactivation through sEMG to reduce ACL injury risk in tennis players. We recruited male, adult, semiprofessional tennis players from July to August 2020. They were asked to drop with the dominant lower limb from a step, to evaluate—based on dynamic valgus stress—the preactivation time of the rectus femoris (RF), vastus medialis, biceps femoris, and medial hamstrings (MH), through sEMG. To highlight the influence of visual inputs, the athletes performed the test blindfolded and not blindfolded on both clay and grass surfaces. We included 20 semiprofessional male players, with a mean age 20.3 ± 4.8 years; results showed significant early muscle activation when the subject lacked visual input, but also when faced with a less-safe surface such as clay over grass. Considering the posteromedial–anterolateral relationship (MH/RF ratio), tennis players showed a significant higher MH/RF ratio if blindfolded (22.0 vs. 17.0% not blindfolded; p < 0.01) and percentage of falling on clay (17.0% vs. 14.0% in grass; p < 0.01). This proof-of-principle study suggests that in case of absence of visual input or falling on a surface considered unsafe (clay), neuro-activation would tend to protect the anterior stress of the knee. Thus, the sEMG might play a crucial role in planning adequate athletic preparation for semiprofessional male athletes in terms of reduction of ACL injury risk.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0015
Author(s):  
Dustin R. Grooms ◽  
Jed A. Diekfuss ◽  
Alexis B. Slutsky-Ganesh ◽  
Cody R. Criss ◽  
Manish Anand ◽  
...  

Background: Anterior cruciate ligament (ACL) injury is secondary to a multifactorial etiology encompassing anatomical, biological, mechanical, and neurological factors. The nature of the injury being primarily due to non-contact mechanics further implicates neural control as a key injury-risk factor, though it has received considerably less study. Purpose: To determine the contribution of neural activity to injury-risk mechanics in ecological sport-specific VR landing scenarios. Methods: Ten female high-school soccer players (15.5±0.85 years; 165.0±6.09 cm; 59.1±11.84 kg) completed a neuroimaging session to capture neural activity during a bilateral leg press and a 3D biomechanics session performing a header within a VR soccer scenario. The bilateral leg press involved four 30 s blocks of repeated bilateral leg presses paced to a metronome beat of 1.2 Hz with 30 s rest between blocks. The VR soccer scenario simulated a corner-kick, requiring the participant to jump and head a virtual soccer ball into a virtual goal (Figure 1A-E). Initial contact and peak knee flexion and abduction angles were extracted during the landing from the header as injury-risk variables of interest and were correlated with neural activity. Results: Evidenced in Table 1 and Figure 1 (bottom row), increased initial contact abduction, increased peak abduction, and decreased peak flexion were associated with increased sensory, visual-spatial, and cerebellar activity (r2= 0.42-0.57, p corrected < .05, z max > 3.1, table & figure 1). Decreased initial contact flexion was associated with increased frontal cortex activity (r2= 0.68, p corrected < .05, z max > 3.1). Conclusion: Reduced neural efficiency (increased activation) of key regions that integrate proprioceptive, visual-spatial, and neurocognitive activity for motor control may influence injury-risk mechanics in sport. The regions found to increase in activity in relation to higher injury-risk mechanics are typically activated to assist with spatial navigation, environmental interaction, and precise motor control. The requirement for athletes to increase their activity for more basic knee motor control may result in fewer neural resources available to maintain knee joint alignment, allocate environmental attention, and handle increased motor coordination demands. These data indicate that strategies to enhance efficiency of visual-spatial and cognitive-motor control during high demand sporting activities is warranted to improve ACL injury-risk reduction. [Figure: see text][Table: see text]


2021 ◽  
pp. 194173812110379
Author(s):  
Steven L. Dischiavi ◽  
Alexis A Wright ◽  
Rachel A. Heller ◽  
Claire E. Love ◽  
Adam J. Salzman ◽  
...  

Context: Anterior cruciate ligament (ACL) injury risk reduction programs have become increasingly popular. As ACL injuries continue to reflect high incidence rates, the continued optimization of current risk reduction programs, and the exercises contained within them, is warranted. The exercises must evolve to align with new etiology data, but there is concern that the exercises do not fully reflect the complexity of ACL injury mechanisms. It was outside the scope of this review to address each possible inciting event, rather the effort was directed at the elements more closely associated with the end point of movement during the injury mechanism. Objective: To examine if exercises designed to reduce the risk of ACL injury reflect key injury mechanisms: multiplanar movement, single limb stance, trunk and hip dissociative control, and a flight phase. Data Sources: A systematic search was performed using PubMed, Medline, EBSCO (CINAHL), SPORTSDiscus, and PEDro databases. Study Selection: Eligibility criteria were as follows: (1) randomized controlled trials or prospective cohort studies, (2) male and/or female participants of any age, (3) exercises were targeted interventions to prevent ACL/knee injuries, and (4) individual exercises were listed and adequately detailed and excluded if program was unable to be replicated clinically. Study Design: Scoping review. Level of Evidence: Level 4. Data Extraction: A total of 35 studies were included, and 1019 exercises were extracted for analysis. Results: The average Consensus on Exercise Reporting Template score was 11 (range, 0-14). The majority of exercises involved bilateral weightbearing (n = 418 of 1019; 41.0%), followed by single limb (n = 345 of 1019; 33.9%) and nonweightbearing (n = 256 of 1019; 25.1%). Only 20% of exercises incorporated more than 1 plane of movement, and the majority of exercises had sagittal plane dominance. Although 50% of exercises incorporated a flight phase, only half of these also involved single-leg weightbearing. Just 16% of exercises incorporated trunk and hip dissociation, and these were rarely combined with other key exercise elements. Only 13% of exercises challenged more than 2 key elements, and only 1% incorporated all 4 elements (multiplanar movements, single limb stance, trunk and hip dissociation, flight phase) simultaneously. Conclusion: Many risk reduction exercises do not reflect the task-specific elements identified within ACL injury mechanisms. Addressing the underrepresentation of key elements (eg, trunk and hip dissociation, multiplanar movements) may optimize risk reduction in future trials.


Sign in / Sign up

Export Citation Format

Share Document