Running Economy During a Simulated 60-km Trial

2014 ◽  
Vol 9 (4) ◽  
pp. 604-609 ◽  
Author(s):  
Federico Schena ◽  
Barbara Pellegrini ◽  
Cantor Tarperi ◽  
Elisa Calabria ◽  
Gian Luca Salvagno ◽  
...  

The effect of a prolonged running trial on the energy cost of running (Cr) during a 60-km ultramarathon simulation at the pace of a 100-km competition was investigated in 13 men (40.8 ± 5.6 y, 70.7 ± 5.5 kg, 177.5 ± 4.5 cm) and 5 women (40.4 ± 2.3 y, 53.7 ± 4.4 kg, 162.4 ± 4.8 cm) who participated in a 60-km trial consisting of 3 consecutive 20-km laps. Oxygen uptake (VO2) at steady state was determined at constant speed before the test and at the end of each lap; stride length (SL) and frequency and contact time were measured at the same time points; serum creatine kinase (S-CPK) was measured before and at the end of the test. Cr in J · kg−1 · m−1, as calculated from VO2ss and respiratory-exchange ratio, did not increase with distance. SL significantly decreased with distance. The net increase in S-CPK was linearly related with the percentage increase of Cr observed during the trial. It is concluded that, in spite of increased S-CPK, this effort was not able to elicit any peripheral or central fatigue or biomechanical adaptation leading to any modification of Cr.

2016 ◽  
Vol 11 (1) ◽  
pp. 308-312 ◽  
Author(s):  
Luiz Antonio Luna Junior ◽  
Juliana de Melo Batista dos Santo ◽  
André Luis Lacerda Bachi ◽  
Roberta Foster ◽  
Alexandre Slowetzky Amaro ◽  
...  

AbstractBackgroundRunning economy (RE), expresses the relationship between the energy cost of running (Cr) and the work performed by a runner and is an predictor of performance. Given the intense effort of marathon runners during training and competition and the dearth of studies that address performance and cytokines in this population, the objective of the current study was to investigate the relationship between RE and cytokines in marathon runners.MethodsA total of 22 recreational marathon runners were examined. Using data obtained from VO2max assessments and sub-maximal tests, the following formula was applied to determine RE: Cr (mLO2·kg-1·km-1) = VO2 (mL·kg-1·h-1) × 60 ÷ speed (km·h-1).ResultsCr values shows no correlation with levels of the serum IL-1β, IL-4, IL-8, IL-10 and TNF-a 24h before, immediately after or 72h after the completion of an official marathon. However, the IL-6 level shows a significant correlation with Cr.Discussion and conclusionThe relationship between higher values of IL-6 and lower RE leads to the hypothesis of a physical under-recovery state by some athletes. Considering the stress caused by training, associated with the higher energetic cost in less economic athletes, it’s possible that the period of resting may not totally compensate for the inflammatory state.


2015 ◽  
Vol 10 (3) ◽  
pp. 381-387 ◽  
Author(s):  
Jordan Santos-Concejero ◽  
Jesús Oliván ◽  
José L. Maté-Muñoz ◽  
Carlos Muniesa ◽  
Marta Montil ◽  
...  

Purpose:This study aimed to determine whether biomechanical characteristics such as ground-contact time, swing time, and stride length and frequency contribute to the exceptional running economy of East African runners.Methods:Seventeen elite long-distance runners (9 Eritrean, 8 European) performed an incremental maximal running test and 3 submaximal running bouts at 17, 19, and 21 km/h. During the tests, gas-exchange parameters were measured to determine maximal oxygen uptake (VO2max) and running economy (RE). In addition, ground-contact time, swing time, stride length, and stride frequency were measured.Results:The European runners had higher VO2max values than the Eritrean runners (77.2 ± 5.2 vs 73.5 ± 6.0 mL · kg−1 · min−1, P = .011, effect sizes [ES] = 0.65), although Eritrean runners were more economical at 19 km/h (191.4 ± 10.4 vs 205.9 ± 13.3 mL · kg−1 · min−1, P = .026, ES = 1.21). There were no differences between groups for ground-contact time, swing time, stride length, or stride frequency at any speed. Swing time was associated with running economy at 21 km/h in the Eritrean runners (r = .71, P = .033), but no other significant association was found between RE and biomechanical variables. Finally, best 10-km performance was significantly correlated with RE (r = –.57; P = .013).Conclusions:Eritrean runners have superior RE compared with elite European runners. This appears to offset their inferior VO2max. However, the current data suggest that their better RE does not have a biomechanical basis. Other factors, not measured in the current study, may contribute to this RE advantage.


2018 ◽  
Vol 13 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Matthew I. Black ◽  
Joseph C. Handsaker ◽  
Sam J. Allen ◽  
Stephanie E. Forrester ◽  
Jonathan P. Folland

The influence of running speed and sex on running economy is unclear and may have been confounded by measurements of oxygen cost that do not account for known differences in substrate metabolism, across a limited range of speeds, and differences in performance standard. Therefore, this study assessed the energy cost of running over a wide range of speeds in high-level and recreational runners to investigate the effect of speed (in absolute and relative terms) and sex (men vs women of equivalent performance standard) on running economy. To determine the energy cost (kcal · kg−1 · km−1) of submaximal running, speed at lactate turn point (sLTP), and maximal rate of oxygen uptake, 92 healthy runners (high-level men, n = 14; high-level women, n = 10; recreational men, n = 35; recreational women, n = 33) completed a discontinuous incremental treadmill test. There were no sex-specific differences in the energy cost of running for the recreational or high-level runners when compared at absolute or relative running speeds (P > .05). The absolute and relative speed–energy cost relationships for the high-level runners demonstrated a curvilinear U shape with a nadir reflecting the most economical speed at 13 km/h or 70% sLTP. The high-level runners were more economical than the recreational runners at all absolute and relative running speeds (P < .05). These findings demonstrate that there is an optimal speed for economical running, there is no sex-specific difference, and high-level endurance runners exhibit better running economy than recreational endurance runners.


1994 ◽  
Vol 6 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Danette M. Rogers ◽  
Kenneth R. Turley ◽  
Kathleen I. Kujawa ◽  
Kevin M. Harper ◽  
Jack H. Wilmore

This study was designed to examine the reliability and variability of running economy in 7-, 8-, and 9-year-old boys and girls. Forty-two children (21 boys and 21 girls) participated in two submaximal treadmill tests to determine running economy at two absolute work rates (5 mph and 6 mph). Reliability and variability were determined for oxygen consumption (V̇O2), heart rate (HR), respiratory exchange ratio (RER), stride frequency, and stride length. With the exception of RER and V̇O2 relative to body surface area, reliability estimates were moderate to high (.80 to .94). Mean variability of all responses were similar to those reported for adults, however, the range of intraindividual variability was slightly greater. These results indicate that two submaximal measurements result in higher reliability estimates than a single test and may therefore provide a more appropriate description of a child’s running economy.


1999 ◽  
Vol 24 (1) ◽  
pp. 301-305
Author(s):  
V. Bunc ◽  
J. Horcic ◽  
J. Heller ◽  
J. Formánek

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4952
Author(s):  
Tobias Baumgartner ◽  
Steffen Held ◽  
Stefanie Klatt ◽  
Lars Donath

Running power as measured by foot-worn sensors is considered to be associated with the metabolic cost of running. In this study, we show that running economy needs to be taken into account when deriving metabolic cost from accelerometer data. We administered an experiment in which 32 experienced participants (age = 28 ± 7 years, weekly running distance = 51 ± 24 km) ran at a constant speed with modified spatiotemporal gait characteristics (stride length, ground contact time, use of arms). We recorded both their metabolic costs of transportation, as well as running power, as measured by a Stryd sensor. Purposely varying the running style impacts the running economy and leads to significant differences in the metabolic cost of running (p < 0.01). At the same time, the expected rise in running power does not follow this change, and there is a significant difference in the relation between metabolic cost and power (p < 0.001). These results stand in contrast to the previously reported link between metabolic and mechanical running characteristics estimated by foot-worn sensors. This casts doubt on the feasibility of measuring running power in the field, as well as using it as a training signal.


2010 ◽  
Vol 25 (2) ◽  
pp. 81-87 ◽  
Author(s):  
M. Buchheit ◽  
P.B. Laursen ◽  
F. Leblond ◽  
S. Ahmaidi

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3694 ◽  
Author(s):  
Hugo A. Kerhervé ◽  
Scott McLean ◽  
Karen Birkenhead ◽  
David Parr ◽  
Colin Solomon

PurposeThe physiological mechanisms for alterations in oxygen utilization ($\dot {\mathrm{V }}{\mathrm{O}}_{2}$) and the energy cost of running (Cr) during prolonged running are not completely understood, and could be linked with alterations in muscle and cerebral tissue oxygenation.MethodsEight trained ultramarathon runners (three women; mean ± SD; age 37 ± 7 yr; maximum $\dot {\mathrm{V }}{\mathrm{O}}_{2}$ 60 ± 15 mL min−1 kg−1) completed a 6 hr treadmill run (6TR), which consisted of four modules, including periods of moderate (3 min at 10 km h−1, 10-CR) and heavy exercise intensities (6 min at 70% of maximum $\dot {\mathrm{V }}{\mathrm{O}}_{2}$, HILL), separated by three, 100 min periods of self-paced running (SP). We measured $\dot {\mathrm{V }}{\mathrm{O}}_{2}$, minute ventilation (${\dot {\mathrm{V }}}_{\mathrm{E}}$), ventilatory efficiency (${\dot {\mathrm{V }}}_{\mathrm{E}}:\dot {\mathrm{V }}{\mathrm{O}}_{2}$), respiratory exchange ratio (RER),Cr, muscle and cerebral tissue saturation index (TSI) during the modules, and heart rate (HR) and perceived exertion (RPE) during the modules and SP.ResultsParticipants ran 58.3 ± 10.5 km during 6TR. Speed decreased and HR and RPE increased during SP. Across the modules, HR and $\dot {\mathrm{V }}{\mathrm{O}}_{2}$ increased (10-CR), and RER decreased (10-CR and HILL). There were no significant changes in ${\dot {\mathrm{V }}}_{\mathrm{E}}$, ${\dot {\mathrm{V }}}_{\mathrm{E}}:\dot {\mathrm{V }}{\mathrm{O}}_{2}$,Cr, TSI and RPE across the modules.ConclusionsIn the context of positive pacing (decreasing speed), increased cardiac drift and perceived exertion over the 6TR, we observed increased RER and increased HR at moderate and heavy exercise intensity, increased $\dot {\mathrm{V }}{\mathrm{O}}_{2}$ at moderate intensity, and no effect of exercise duration on ventilatory efficiency, energy cost of running and tissue oxygenation.


Sign in / Sign up

Export Citation Format

Share Document