A Reappraisal of Success Factors for Olympic Cross-Country Skiing

2014 ◽  
Vol 9 (1) ◽  
pp. 117-121 ◽  
Author(s):  
Øyvind Sandbakk ◽  
Hans-Christer Holmberg

Cross-country (XC) skiing has been an Olympic event since the first Winter Games in Chamonix, France, in 1924. Due to more effective training and tremendous improvements in equipment and track preparation, the speed of Olympic XC-ski races has increased more than that of any other Olympic endurance sport. Moreover, pursuit, mass-start, and sprint races have been introduced. Indeed, 10 of the 12 current Olympic competitions in XC skiing involve mass starts, in which tactics play a major role and the outcome is often decided in the final sprint. Accordingly, reappraisal of the success factors for performance in this context is required. The very high aerobic capacity (VO2max) of many of today’s world-class skiers is similar that of their predecessors. At the same time, the new events provide more opportunities to profit from anaerobic capacity, upper-body power, high-speed techniques, and “tactical flexibility.” The wide range of speeds and slopes involved in XC skiing requires skiers to continuously alternate between and adapt different subtechniques during a race. This technical complexity places a premium on efficiency. The relative amounts of endurance training performed at different levels of intensity have remained essentially constant during the past 4 decades. However, in preparation for the Sochi Olympics in 2014, XC skiers are performing more endurance training on roller skis on competition-specific terrain, placing greater focus on upper-body power and more systematically performing strength training and skiing at high speeds than previously.

2017 ◽  
Vol 12 (2) ◽  
pp. 254-259 ◽  
Author(s):  
Øyvind Sandbakk

Competitive cross-country (XC) skiing has traditions extending back to the mid-19th century and was included as a men’s event in the first Winter Games in 1924. Since then, tremendous improvements in equipment, track preparation, and knowledge about training have prompted greater increases in XC-skiing speeds than in any other Olympic sport. In response, this commentary focuses on how the training of successful XC skiers has evolved, with interviews and training data from surviving Norwegian world and Olympic XC champions as primary sources. Before 1970, most male champion XC skiers were lumberjacks who ran or skied long distances to and from felling areas while working long days in the woods. In addition, they trained as much as possible, with increased intensity during the autumn, while less work but more ski-specific training and competitions were done during the winter. Until the 1970s, few XC skiers were women, whom coaches believed tolerated less training than men did. Today’s XC skiers are less physically active, but the influence of both science and the systematic approaches of former athletes and coaches have gradually taught XC skiers to adopt smarter, more goal-oriented training practices. Although the very high VO2max of world-class XC skiers has remained the same since the 1960s, new events in modern XC skiing have additionally required superior upper-body power, high-speed techniques, and tactical flexibility. These elements also emerge in the training of today’s best skiers; women’s physiological capacities and training routines especially seem to have improved dramatically.


2015 ◽  
Vol 40 (4) ◽  
pp. 1045-1055 ◽  
Author(s):  
Mehmet Fatih Akay ◽  
Fatih Abut ◽  
Shahaboddin Daneshvar ◽  
Dan Heil

1999 ◽  
Vol 31 (Supplement) ◽  
pp. S335
Author(s):  
T. W. Nesser ◽  
S. E. Gaskill ◽  
S. P. Chen ◽  
C. M. Peterson ◽  
A. J. Walker ◽  
...  

2019 ◽  
Vol 14 (9) ◽  
pp. 1190-1199 ◽  
Author(s):  
Øyvind Skattebo ◽  
Thomas Losnegard ◽  
Hans Kristian Stadheim

Purpose: Long-distance cross-country skiers specialize to compete in races >50 km predominantly using double poling (DP). This emphasizes the need for highly developed upper-body endurance capacities and an efficient DP technique. The aim of this study was to investigate potential effects of specialization by comparing physiological capacities and kinematics in DP between long-distance skiers and skiers competing using both techniques (skating/classic) in several competition formats (“all-round skiers”). Methods: Seven male long-distance (32 [6] y, 183 [6] cm, 76 [5] kg) and 6 all-round (25 [3] y, 181 [5] cm, 75 [6] kg) skiers at high international levels conducted submaximal workloads and an incremental test to exhaustion for determination of peak oxygen uptake (VO2peak) and time to exhaustion (TTE) in DP and running. Results: In DP and running maximal tests, TTE showed no difference between groups. However, long-distance skiers had 5–6% lower VO2peak in running (81 [5] vs 85 [3] mL·kg−1·min−1; P = .07) and DP (73 [3] vs 78 [3] mL·kg−1·min−1; P < .01) than all-round skiers. In DP, long-distance skiers displayed lower submaximal O2 cost than all-round skiers (3.8 ± 3.6%; P < .05) without any major differences in cycle times or cyclic patterns of joint angles and center of mass. Lactate concentration over a wide range of speeds (45–85% of VO2peak) did not differ between groups, even though each workload corresponded to a slightly higher percentage of VO2peak for long-distance skiers (effect size: 0.30–0.68). Conclusions: The long-distance skiers displayed lower VO2peak but compensated with lower O2 cost to perform equally with the all-round skiers on a short TTE test in DP. Furthermore, similar submaximal lactate concentration and reduced O2 cost could be beneficial in sustaining high skiing speeds in long-duration competitions.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0127509 ◽  
Author(s):  
Ann Magdalen Hegge ◽  
Kenneth Myhre ◽  
Boye Welde ◽  
Hans-Christer Holmberg ◽  
Øyvind Sandbakk

1999 ◽  
Vol 20 (05) ◽  
pp. 290-294 ◽  
Author(s):  
S. Gaskill ◽  
R. Serfass ◽  
K. Rundel

Sign in / Sign up

Export Citation Format

Share Document