double poling
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 32)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Chenglin Liu ◽  
Yuan Tian ◽  
Longfeng Zhou ◽  
Zhulin Tian ◽  
Gang Sun ◽  
...  

Abstract Understanding the physical fitness attributes in a sport-specific technical skill is a key to improve the action economy, and thus aerobic endurance performance. The present study was designed to investigate how upper limb muscle strength predicts double poling (DP) power performance in cross-country sit-skiing. A total of 19 female able-bodied college students (age 23.2±0.8 years, BMI 20.4±2.2) were subjected to a 30-s and 3-min DP performance tests using a sit-skiing ergometer. Isokinetic muscle strength by the angular velocity of 30 °/second, 60 °/second, and 120 °/second of the shoulder and elbow extensor/flexor were measured with an ISOMED2000 isokinetic system. A medium correlation was found between DP output power and isokinetic upper limb muscle strength (shoulder strength at all speed, r = 0.39-0.74, p < 0.1). Multiple regressions, which were employed to predict power production in the 30-s and 3-min tests, showed that shoulder extension strength at 60 °/second accounted for 34% of the variation in the 30-s test, and 40% of the variance in the 3-min test.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Henry Parry ◽  
Alfred Buskqvist ◽  
Petter Erlandsson ◽  
Christian Öhrman ◽  
Hampus Lindblom ◽  
...  

AbstractThis study aimed to determine whether the recently developed Flow Motion Technology® roller-ski prototype could improve indicators of performance during sub-maximal and maximal cross-country roller skiing. Thirteen national and international cross-country skiers completed 2 experimental trials: 1 with Flow Motion Technology® activated, allowing a rocking motion between the foot and ski binding, and 1 with the foot fixed in a traditional manner. Each trial included 2 sub-maximal bouts using the diagonal-stride and double-poling sub-techniques, as well as a double-poling maximal velocity test and a diagonal-stride 6-min time trial. There were no differences in performance between Flow Motion Technology® and traditional roller skiing during the maximal velocity test or the time trial. However, reductions in mean plantar force during sub-maximal diagonal stride (p = 0.011) and ankle range of motion during sub-maximal (p = 0.010) and maximal (p = 0.041) diagonal stride were observed with Flow Motion Technology® versus traditional roller skiing. This, together with a reduced minimum horizontal distance of the hips in front of the ankles during sub-maximal double poling (p = 0.001), indicated impaired technique with Flow Motion Technology®, which may have contributed to the trend for reduced gross efficiency during double poling with Flow Motion Technology® (pη2 = 0.214). Significant physiological differences included a reduced sub-maximal double poling respiratory exchange ratio (p = 0.03) and a greater maximal heart rate during the time trial (p = 0.014) with Flow Motion Technology®. We conclude that the application of Flow Motion Technology® requires further examination before use in training and competition.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yannick Palmowski ◽  
Srdan Popovic ◽  
Simone G. Schuster ◽  
Sebastian Hardt ◽  
Philipp Damm

Abstract Objective To evaluate the influence of Nordic walking (NW) on hip joint loads in order to determine whether it can be safely performed during postoperative physiotherapy in patients after orthopeadic surgery of the hip. Methods Internal hip joint loads were directly measured in vivo in 6 patients using instrumented hip prostheses during NW and ordinary walking (OW). All patients received training in two different NW techniques (double-poling and the diagonal technique) by a certified NW instructor. Measurements were conducted on a treadmill at a speed of 4 km/h on level ground, at 10% inclination and at 10% slope as well as on a level lawn at a self chosen comfortable speed. Resultant contact force (Fres), bending moment (Mbend) and torsional torque (Mtors) were compared between NW and OW as well as between both NW techniques. Results Joint loads showed a double peak pattern during all setups. Neither NW technique significantly influenced hip joint loads at the time of the first load peak during contralateral toe-off (CTO), which was also the absolute load peak, in comparison to OW. Compared to OW, double-poling significantly reduced Fres and Mbend at the time of the second load peak during the contralateral heel strike (CHS) on level ground both on the treadmill (− 6% and − 7%, respectively) and on the lawn (− 7% and − 9%). At 10% inclination, the diagonal technique increased Fres and Mbend at CHS (by + 6% and + 7%), but did not increase the absolute load peak at CTO. Conclusion Joint loads during NW are comparable to those of OW. Therefore, NW can be considered a low-impact activity and seems to be safe for patients that are allowed full weight bearing, e.g. during postoperative rehabilitation after THA.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256662
Author(s):  
Rune Kjøsen Talsnes ◽  
Guro Strøm Solli ◽  
Jan Kocbach ◽  
Per-Øyvind Torvik ◽  
Øyvind Sandbakk

The purpose of the present study was to investigate how various laboratory- and field-based tests predict on-snow cross-country (XC) skiing and roller-skiing performance. Thirty-three national-level male XC skiers (19.0±2.5 years, maximal oxygen uptake [VO2max] 70.8±4.7 mL·min-1·kg-1) performed a 13.6-km roller-ski skating competition tracked by a global positioning system (GPS), which together with individual distance International Ski Federation (FIS) points was used to assess their performance level. On separate days, time in a 6.4-km uphill running time-trial (RUN-TT) and 1.3-km uphill roller-ski double-poling time-trial (DP-TT) was measured in the field and performance indices determined while running and roller-ski skating in the laboratory. The mean finishing times for the RUN-TT and the DP-TT showed moderate to large correlations with distance FIS points and performance in the roller-ski skating competition (r = 0.56–0.72; all p<0.05). RUN-TT was more strongly correlated with distance FIS points than DP-TT (r = 0.72 versus 0.56; p<0.05). Performance indices and VO2max in incremental running and roller-ski skating in the laboratory showed large to very large correlations with distance FIS points and roller-skiing performance (r = 0.50–0.90; all p<0.05). Performance indices and VO2max in running tended to be more strongly correlated with roller-skiing performance than corresponding values obtained while roller-ski skating (all p<0.10). The present findings suggest that both laboratory performance indices and field-based performance tests provide valid predictions of XC skiing and roller-skiing performance in a heterogeneous group of male XC skiers, with test values obtained in running tending to be more strongly correlated with XC skiing performance than those found for technique-specific modalities on roller skis. However, more sophisticated and mode-specific testing might be required for more homogenous groups of elite XC skiers.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255202
Author(s):  
Jørgen Danielsen ◽  
Øyvind Sandbakk ◽  
David McGhie ◽  
Gertjan Ettema

Objectives The aim of this study was to examine the effect of speed on mechanical energy fluctuations and propulsion mechanics in the double-poling (DP) technique of cross-country skiing. Methods Kinematics and dynamics were acquired while fourteen male skiers performed roller-skiing DP on a treadmill at increasing speeds (15, 21 and 27 km∙h-1). Kinetic (Ekin), potential (Epot), and total (Ebody) body mechanical energy and pole power (Ppole) were calculated. Inverse dynamics was used to calculate arm power (Parm). Trunk+leg power (PT+L) was estimated, as was the power associated with body movements perpendicular to goal-direction (E.body⊥). Results Ekin and Epot fluctuated out-of-phase throughout the cycle, at first sight indicating that pendulum-like behaviour occurs partly in DP. However, during the swing phase, the increase in Epot (body heightening) was mainly driven by positive PT+L, while the decrease in Ekin was lost to rolling friction, and during the poling phase, considerable positive Parm generation occurs. Thus, possible exchange between Ekin and Epot seem not to occur as directly and passively as in classic pendulum locomotion (walking). During the poling phase, E.body⊥fluctuated out-of-phase with Ppole, indicating a transfer of body energy to Ppole. In this way, power generated by trunk+leg mainly during the swing phase (body heightening) can be used in the poling phase as pole power. At all speeds, negative PT+L occurred during the poling phase, suggesting energy absorption of body energy not transferred to pole power. Thus, DP seem to resemble bouncing ball-like behaviour more than pendulum at faster speeds. Over the cycle, Parm contribution to Ppole (external power) was 63% at 15 km∙h-1 and 66% at 21 and 27 km∙h-1, with the remainder being PT+L contribution. Conclusions When speed increases in level DP, both power production and absorption by trunk+leg actions increase considerably. This enhanced involvement of the legs at faster speeds is likely a prerequisite for effective generation of pole power at high speeds with very short poling times. However, the relative trunk+leg power contribution did not increase at the speeds studied here.


2021 ◽  
Vol 1 ◽  
pp. 1073-1082
Author(s):  
Helene Silseth ◽  
Henrik Snarvold Sletten ◽  
Harald Grøndahl ◽  
Sindre Wold Eikevåg ◽  
Martin Steinert

AbstractThis article presents a design of an experiment for investigating the effect of changing the geometry of Paralympic alpine sit-ski poles/outriggers in the LW 10-12 class. An experiment design for mapping an individual athlete’s performance parameters has been developed, with a resolution for finding the optimal outrigger geometry. By prototyping an adjustable experiment setup with implemented sensor systems, the performance increase can be analysed and implemented in new equipment. Results show that changing double poling geometry provides a substantial performance increase, regarding time and propulsive force.


Sports ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 79
Author(s):  
Priit Purge ◽  
Dmitri Valiulin ◽  
Allar Kivil ◽  
Alexander Müller ◽  
Gerhard Tschakert ◽  
...  

Pre-competitive conditioning has become a substantial part of successful performance. In addition to temperature changes, a metabolic conditioning can have a significant effect on the outcome, although the right dosage of such a method remains unclear. The main goal of the investigation was to measure how a lower body high-intensity anaerobic cycling pre-load exercise (HIE) of 25 s affects cardiorespiratory and metabolic responses in subsequent upper body performance. Thirteen well-trained college-level male cross-country skiers (18.1 ± 2.9 years; 70.8 ± 7.6 kg; 180.6 ± 4.7 cm; 15.5 ± 3.5% body fat) participated in the study. The athletes performed a 1000-m maximal double-poling upper body ergometer time trial performance test (TT) twice. One TT was preceded by a conventional low intensity warm-up (TTlow) while additional HIE cycling was performed 9 min before the other TT (TThigh). Maximal double-poling performance after the TTlow (225.1 ± 17.6 s) was similar (p > 0.05) to the TThigh (226.1 ± 15.7 s). Net blood lactate (La) increase (delta from end of TT minus start) from the start to the end of the TTlow was 10.5 ± 2.2 mmol L−1 and 6.5 ± 3.4 mmol L−1 in TThigh (p < 0.05). La net changes during recovery were similar for both protocols, remaining 13.5% higher in TThigh group even 6 min after the maximal test. VCO2 was lower (p < 0.05) during the last 400-m split in TThigh, however during the other splits no differences were found (p < 0.05). Respiratory exchange ratio (RER) was significantly lower in TThigh in the third, fourth and the fifth 200 m split. Participants individual pacing strategies showed high relation (p < 0.05) between slower start and faster performance. In conclusion, anaerobic metabolic pre-conditioning leg exercise significantly reduced net-La increase, but all-out upper body performance was similar in both conditions. The pre-conditioning method may have some potential but needs to be combined with a pacing strategy different from the usual warm-up procedure.


Author(s):  
Magdalena Karczewska-Lindinger ◽  
Vesa Linnamo ◽  
Valeria Rosso ◽  
Laura Gastaldi ◽  
Walter Rapp ◽  
...  

Abstract Purpose To biomechanically profile force generation connected to the complex role of the trunk in double poling in a representative sample of Para-Nordic sit-skiers. Methods Twelve male World Cup Para-Nordic sit-skiers (sport classes: LW10–12) were skiing on flat snow terrain at submaximal speed of 4.5 m/s (~ 73% maximum speed). 2D video (50 Hz) and pole force analyses (1000 Hz) were performed synchronously, examining angle, force and cycle characteristics to analyse the role of the trunk in generating propulsion. Results LW10–11.5 skiers lost between 21% and 4% propulsive force versus LW12 athletes only due to different geometrics of the trunk and pole angle at an equal axial pole force. While LW10–11 skiers indicated trunk extension or position maintenance during pole thrust, LW11.5–12 skiers showed strong trunk flexion combined with smaller pole angles to the ground. Hence, LW11.5–12 skiers could create larger propulsive forces and therefore greater cycle lengths at lower cycle rates at the same speed. Maximum speed increased from LW10 to LW12 and was significantly correlated to trunk flexion range of motion (r = 0.63) and cycle length (r = 0.59). Trunk flexion ROM showed a significant relationship to the impulse of propulsive force (r = 0.63) and pole angle to the ground (r = − 0.76) (all P < 0.05). Conclusion The impact of impairment on the force production profiles and its physiological-biomechanical consequences need further investigation also in other terrains and at wider spectrums of skiing speeds. The evident problem of low numbers of LW10–11 skiers in World Cup needs creative future solutions for research.


Sign in / Sign up

Export Citation Format

Share Document