scholarly journals Double-Poling Physiology and Kinematics of Elite Cross-Country Skiers: Specialized Long-Distance Versus All-Round Skiers

2019 ◽  
Vol 14 (9) ◽  
pp. 1190-1199 ◽  
Author(s):  
Øyvind Skattebo ◽  
Thomas Losnegard ◽  
Hans Kristian Stadheim

Purpose: Long-distance cross-country skiers specialize to compete in races >50 km predominantly using double poling (DP). This emphasizes the need for highly developed upper-body endurance capacities and an efficient DP technique. The aim of this study was to investigate potential effects of specialization by comparing physiological capacities and kinematics in DP between long-distance skiers and skiers competing using both techniques (skating/classic) in several competition formats (“all-round skiers”). Methods: Seven male long-distance (32 [6] y, 183 [6] cm, 76 [5] kg) and 6 all-round (25 [3] y, 181 [5] cm, 75 [6] kg) skiers at high international levels conducted submaximal workloads and an incremental test to exhaustion for determination of peak oxygen uptake (VO2peak) and time to exhaustion (TTE) in DP and running. Results: In DP and running maximal tests, TTE showed no difference between groups. However, long-distance skiers had 5–6% lower VO2peak in running (81 [5] vs 85 [3] mL·kg−1·min−1; P = .07) and DP (73 [3] vs 78 [3] mL·kg−1·min−1; P < .01) than all-round skiers. In DP, long-distance skiers displayed lower submaximal O2 cost than all-round skiers (3.8 ± 3.6%; P < .05) without any major differences in cycle times or cyclic patterns of joint angles and center of mass. Lactate concentration over a wide range of speeds (45–85% of VO2peak) did not differ between groups, even though each workload corresponded to a slightly higher percentage of VO2peak for long-distance skiers (effect size: 0.30–0.68). Conclusions: The long-distance skiers displayed lower VO2peak but compensated with lower O2 cost to perform equally with the all-round skiers on a short TTE test in DP. Furthermore, similar submaximal lactate concentration and reduced O2 cost could be beneficial in sustaining high skiing speeds in long-duration competitions.

Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


2021 ◽  
Vol 77 (1) ◽  
pp. 97-105
Author(s):  
Per-Øyvind Torvik ◽  
Johan Persson ◽  
Roland van den Tillaar

Abstract The aims of this study were to compare performance with physiological and perceptual responses on steep uphill inclines between double poling and diagonal stride and to investigate the effects of pole length when double poling. Eight male, competitive cross-country skiers (22 ± 1.1 yrs, peak oxygen uptake (VO2peak) in the diagonal stride: 69.4 ± 5.5 ml·kg-1·min-1) performed four identical tests, one in the diagonal stride, and three in double poling with different pole lengths (self-selected, self-selected -5 cm and self-selected +10 cm). Each test was conducted at a fixed speed (10 km/h), with inclination rising by 1%, starting with 7%, each until voluntary exhaustion. VO2peak, the heart rate, blood lactate concentration, and the rating of perceived exertion were determined for each pole length in each test. The peak heart rate (p < 0.001) and VO2peak (p = 0.004) were significantly higher in the diagonal stride test compared with double poling with all pole lengths. Time to exhaustion (TTE) differed significantly between all four conditions (all p < 0.001), with the following order from the shortest to the longest TTE: short poles, normal poles and long poles in double poling, and the diagonal stride. Consequently, a significantly higher slope inclination was reached (p < 0.001) using the diagonal stride (17%) than for double poling with long poles (14%), normal (13%) and short (13%) poles. The current study showed better performance and higher VO2peak in the diagonal stride compared to double poling in steep uphill terrain, demonstrating the superiority of the diagonal stride for uphill skiing. However, in double poling, skiers achieved improved performance due to greater skiing efficiency when using long poles, compared to normal and short poles.


Author(s):  
Dionne A. Noordhof ◽  
Sjur J. Øfsteng ◽  
Linnea Nirenberg ◽  
Daniel Hammarström ◽  
Joar Hansen ◽  
...  

Performance-determining variables are usually measured from a rested state and not after prolonged exercise, specific to when athletes compete for the win in long-distance events. Purpose: (1) To compare cross-country skiing double-poling (DP) performance and the associated physiological and biomechanical performance-determining variables between a rested state and after prolonged exercise and (2) to investigate whether the relationship between the main performance-determining variables and DP performance is different after prolonged submaximal DP than when tested from a rested state. Methods: Male cross-country skiers (N = 26) performed a blood lactate profile test and an incremental test to exhaustion from a rested state on day 1 (D1; all using DP) and after 90-minute submaximal DP on day 2 (D2). Results: The DP performance decreased following prolonged submaximal DP (D1: peak speed = 15.33–20.75 km·h−1, median = 18.1 km·h−1; D2: peak speed = 13.68–19.77 km·h−1, median = 17.8 km·h−1; z = −3.96, P < .001, effect size r = −.77), which coincided with a reduced submaximal gross efficiency and submaximal and peak cycle length, with no significant change in peak oxygen uptake (P = .26, r = .23). The correlation coefficient between D1 cycle length at 12 km·h−1 and D2 performance is significantly smaller than the correlation coefficient between D2 cycle length at 12 km·h−1 and D2 performance (P = .033), with the same result being found for peak cycle length (P < .001). Conclusions: The reduced DP performance after prolonged submaximal DP coincided with a reduced submaximal gross efficiency and shorter peak cycle length. The results indicate that performance-determining variables could be determined after prolonged exercise to gain more valid insight into long-distance DP performance.


Author(s):  
Natalia Grzebisz-Zatońska ◽  
Tomasz Grzywacz ◽  
Zbigniew Waśkiewicz

Monitoring the training of amateur long-distance cross-country skiers (XCS) can help athletes’ achieve a higher exercise capacity and protect their health. The aim of this study was to assess body composition changes and lipid profiles in middle-aged amateur long-distance XCS after four months of training, including specialized roller ski training. The results of the time-to-exhaustion (TTE) test and blood tests and changes in body composition were analyzed with basic descriptive statistics: the paired Wilcoxon test was used to compare the results (initial and final). Spearman’s rank correlation coefficient (R) was used to assess the influence of various variables on maximum oxygen uptake (VO2max). The findings show that training of amateur long-distance XCS improved maximal oxygen uptake (p = 0.008) and had a positive effect on fat reduction, measured in percentages (p = 0.038) and in kilograms (p = 0.023), but did not change blood lipids or other parameters. Further research could focus on other aspects of the annual training cycle: the competition period, and women in a larger group of athletes. Training with roller skis and a cross-country skiing training machine (a specialized machine for strengthening the arms and upper body) can support health and prevent obesity, overweight, and cardiovascular disease.


Diagnostics ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 442 ◽  
Author(s):  
Natalia Grzebisz

Cross-country skiing has a positive effect on health. However, without an individual, thoughtful, and professional plan, it can cause irreversible health problems from overload and injury. The impact of exercise on results is well understood within the group of professional athletes. However, this remains unknown within the group of amateur cross-country skiers and marathon runners—in particular, the impact of the summer preparation period in which training loads performed in the oxygen zone combined with resistance training dominate. The aim of this study was to assess changes in the cardiovascular capacity and body mass composition of male cross-country skiers in the preparation period of their macrocycle. Variables were analyzed using basic descriptive statistics: mean and standard deviation (SD). To compare the results from both measurements (initial and final) the paired Wilcoxon test was used. A statistically significant increase was noted in maximum oxygen uptake and maximum minute ventilation, and a decrease in body fat content, maximum lactate concentration and lactate threshold, and heart rate on anaerobic threshold. Research indicated that in the amateur group increases similar to those in top competitors were achieved in the parameters tested, but the initial level was often significantly lower.


1993 ◽  
Vol 18 (4) ◽  
pp. 359-365 ◽  
Author(s):  
Phillip B. Watts ◽  
Jon Eric Sulentic ◽  
Kip M. Drobish ◽  
Timothy P. Gibbons ◽  
Victoria S. Newbury ◽  
...  

The present study attempted to quantify differences in peak physiological responses to pole-striding (PS), double poling on roller skis (DP), and diagonal striding on roller skis (DS) during maximal exercise. Six expert cross-country ski racers (3 M, 3 F) with a mean age of 20.2 ± 1.3 yrs served as subjects. Testing was conducted on a motorized ski treadmill with a tracked belt surface. Expired air was analyzed continuously via an automated open-circuit system and averaged each 20 s. Heart rate was monitored via telemetry and arterialized blood was collected within 1 min of test termination and analyzed immediately for lactate. Peak values for heart rate and blood lactate did not differ among techniques. Peak oxygen uptake was higher for PS and DS versus DP whereas no difference was found between PS and DS. The VO2 peak for DP was 77 and 81% of VO2 peak for PS and DS, respectively. It was concluded that despite similar peak heart rate and blood lactate values, DP elicits a lower VO2 peak than DS or PS and that PS responses appear to closely reflect those of DS. Key words: exercise testing, maximum oxygen uptake, roller skiing, specificity of exercise, x-c skiing


2017 ◽  
Vol 12 (2) ◽  
pp. 211-217 ◽  
Author(s):  
Thomas Losnegard ◽  
Håvard Myklebust ◽  
Øyvind Skattebo ◽  
Hans Kristian Stadheim ◽  
Øyvind Sandbakk ◽  
...  

Purpose:In the double-poling (DP) cross-country-skiing technique, propulsive forces are transferred solely through the poles. The aim of the current study was to investigate how pole length influences DP performance, O2 cost, and kinematics during treadmill roller skiing.Methods:Nine male competitive cross-country skiers (24 ± 3 y, 180 ± 5 cm, 72 ± 5 kg, VO2max running 76 ± 6 mL · kg–1 · min–1) completed 2 identical test protocols using self-selected (84% ± 1% of body height) and long poles (self-selected + 7.5 cm; 88% ± 1% of body height) in a counterbalanced fashion. Each test protocol included a 5-min warm-up (2.5 m/s; 2.5°) and three 5-min submaximal sessions (3.0, 3.5, and 4.0 m/s; 2.5°) for assessment of O2 cost, followed by a selfpaced 1000-m time trial (~3 min, >5.0 m/s; 2.5°). Temporal patterns and kinematics were assessed using accelerometers and 2D video.Results:Long poles reduced 1000-m time (mean ± 90% confidence interval; –1.0% ± 0.7%, P = .054) and submaximal O2 cost (–2.7% ± 1.0%, P = .002) compared with self-selected poles. The center-of-mass (CoM) vertical range of displacement tended to be smaller for long than for self-selected poles (23.3 ± 3.0 vs 24.3 ± 3.0 cm, P = .07). Cycle and reposition time did not differ between pole lengths at any speeds tested, whereas poling time tended to be shorter for self-selected than for long poles at the lower speeds (≤3.5 m/s, P ≤ .10) but not at the higher speeds (≥4.0 m/s, P ≥ .23).Conclusions:DP 1000-m time, submaximal O2 cost, and CoM vertical range of displacement were reduced in competitive cross-country skiers using poles 7.5 cm longer than self-selected ones.


2008 ◽  
Vol 33 (6) ◽  
pp. 1105-1111 ◽  
Author(s):  
Craig A. Williams ◽  
Jeanne Dekerle ◽  
Kerry McGawley ◽  
Serge Berthoin ◽  
Helen Carter

The purpose of the study was to identify critical power (CP) in boys and girls and to examine the physiological responses to exercise at and 10% above CP (CP+10%) in a sub-group of boys. Nine boys and 9 girls (mean age 12.3 (0.5) y performed 3 constant-load tests to derive CP. Eight of the boys then exercised, in random order, at CP and CP+10% until volitional exhaustion. CP was 123 (28) and 91 (26) W for boys and girls, respectively (p < 0.02), which was equivalent to 75 (6) and 72 (10) % of peak oxygen uptake, respectively (p > 0.47). Boys’ time to exhaustion at CP was 18 min 37 s (4 min 13 s), which was significantly longer (p < 0.007) than that at CP+10% (9 min 42 s (2 min 31 s)). End-exercise values for blood lactate concentration (B[La]) and maximal oxygen uptake were higher in the CP+10% trial (5.0 (2.4) mmol·L–1 and 2.15 (0.4) L·min–1, respectively) than in the CP trial, (B[La], 4.7 (2.1) mmol·L–1; maximal oxygen uptake, 2.05 (0.35) L·min–1; p > 0.13). Peak oxygen uptake (expressed as a percentage of the peak value) was not attained at the end of the trials (94 (12) and 98 (14) % for CP and CP+10%, respectively). These results provide information about the boundary between the heavy and severe exercise intensity domains in children, and have demonstrated that CP in a group of boys does not represent a sustainable steady-state intensity of exercise.


2014 ◽  
Vol 9 (1) ◽  
pp. 117-121 ◽  
Author(s):  
Øyvind Sandbakk ◽  
Hans-Christer Holmberg

Cross-country (XC) skiing has been an Olympic event since the first Winter Games in Chamonix, France, in 1924. Due to more effective training and tremendous improvements in equipment and track preparation, the speed of Olympic XC-ski races has increased more than that of any other Olympic endurance sport. Moreover, pursuit, mass-start, and sprint races have been introduced. Indeed, 10 of the 12 current Olympic competitions in XC skiing involve mass starts, in which tactics play a major role and the outcome is often decided in the final sprint. Accordingly, reappraisal of the success factors for performance in this context is required. The very high aerobic capacity (VO2max) of many of today’s world-class skiers is similar that of their predecessors. At the same time, the new events provide more opportunities to profit from anaerobic capacity, upper-body power, high-speed techniques, and “tactical flexibility.” The wide range of speeds and slopes involved in XC skiing requires skiers to continuously alternate between and adapt different subtechniques during a race. This technical complexity places a premium on efficiency. The relative amounts of endurance training performed at different levels of intensity have remained essentially constant during the past 4 decades. However, in preparation for the Sochi Olympics in 2014, XC skiers are performing more endurance training on roller skis on competition-specific terrain, placing greater focus on upper-body power and more systematically performing strength training and skiing at high speeds than previously.


Sign in / Sign up

Export Citation Format

Share Document