Rearfoot Motion and Pressure Distribution Patterns during Running in Shoes with Varus and Valgus Wedges

1995 ◽  
Vol 11 (2) ◽  
pp. 177-187 ◽  
Author(s):  
Thomas L. Milani ◽  
Gerrit Schnabel ◽  
Ewald M. Hennig

The purpose of this study was to investigate the influence of 8° varus and vaigus shoe modifications on the foot mechanics in overground running. Twenty male subjects performed eight rearfoot running trials in three shoe conditions. Ground reaction forces, tibial accelerations, rearfoot motion, and in-shoe pressure distribution data were collected simultaneously. Between footwear conditions, force and acceleration parameters were found to be significantly different. Compared to the neutral shoe, maximum pronation and pronation velocity were reduced for the varus and increased for the vaigus shoes. Higher lateral rearfoot loads and an increased contribution of the first ray in the forefoot could be evaluated for the vaigus shoe. In contrast, a larger contribution of the medial midfoot and the fifth metatarsal head was observed for the varus shoe. The relative load analysis from the pressure distribution measurements provided additional information about the behavior of the foot in response to major changes in shoe construction.

2008 ◽  
Vol 40 (Supplement) ◽  
pp. S332
Author(s):  
Ryan Chang ◽  
Pedro A. Rodrigues ◽  
Allison H. Gruber ◽  
Joseph Hamill

2021 ◽  
Vol 8 (5) ◽  
pp. 210281
Author(s):  
Kendra I. Lennie ◽  
Sarah L. Manske ◽  
Chris F. Mansky ◽  
Jason S. Anderson

Evidence for terrestriality in early tetrapods is fundamentally contradictory. Fossil trackways attributed to early terrestrial tetrapods long predate the first body fossils from the Late Devonian. However, the Devonian body fossils demonstrate an obligatorily aquatic lifestyle. Complicating our understanding of the transition from water to land is a pronounced gap in the fossil record between the aquatic Devonian taxa and presumably terrestrial tetrapods from the later Early Carboniferous. Recent work suggests that an obligatorily aquatic habit persists much higher in the tetrapod tree than previously recognized. Here, we present independent microanatomical data of locomotor capability from the earliest Carboniferous of Blue Beach, Nova Scotia. The site preserves limb bones from taxa representative of Late Devonian to mid-Carboniferous faunas as well as a rich trackway record. Given that bone remodels in response to functional stresses including gravity and ground reaction forces, we analysed both the midshaft compactness profiles and trabecular anisotropy, the latter using a new whole bone approach. Our findings suggest that early tetrapods retained an aquatic lifestyle despite varied limb morphologies, prior to their emergence onto land. These results suggest that trackways attributed to early tetrapods be closely scrutinized for additional information regarding their creation conditions, and demand an expansion of sampling to better identify the first terrestrial tetrapods.


2016 ◽  
Vol 3 (11) ◽  
pp. 160602 ◽  
Author(s):  
Emanuel Andrada ◽  
Roy Müller ◽  
Reinhard Blickhan

As an alternative to walking and running, humans are able to skip. However, adult humans avoid it. This fact seems to be related to the higher energetic costs associated with skipping. Still, children, some birds, lemurs and lizards use skipping gaits during daily locomotion. We combined experimental data on humans with numerical simulations to test whether stability and robustness motivate this choice. Parameters for modelling were obtained from 10 male subjects. They locomoted using unilateral skipping along a 12 m runway. We used a bipedal spring loaded inverted pendulum to model and to describe the dynamics of skipping. The subjects displayed higher peak ground reaction forces and leg stiffness in the first landing leg (trailing leg) compared to the second landing leg (leading leg). In numerical simulations, we found that skipping is stable across an amazing speed range from skipping on the spot to fast running speeds. Higher leg stiffness in the trailing leg permits longer strides at same system energy. However, this strategy is at the same time less robust to sudden drop perturbations than skipping with a stiffer leading leg. A slightly higher stiffness in the leading leg is most robust, but might be costlier.


2013 ◽  
Vol 44 (3) ◽  
pp. 503-509 ◽  
Author(s):  
Marcelo Castro ◽  
Sofia Abreu ◽  
Helena Sousa ◽  
Leandro Machado ◽  
Rubim Santos ◽  
...  

Author(s):  
Ying Yue Zhang ◽  
Si Qin Shen ◽  
Julien S. Baker ◽  
Yao Dong Gu

The design of modern footwear seems to have an excessive protective effect on the function of the foot. The purpose of this study was to examine how bionic shoes designed would influence the biomechanical index of gait patterns. There were 10 male subjects underwent gait analysis. Normal sports shoes (NS) with flat-soles were selected as control shoes. The experimental shoes comprising of two elasticity levels were defined as soft-sole bionic shoes (SS) and hard-sole bionic shoes (HS). We examined ground reaction forces, plantar pressures and angles of the ankle, knee and hip during walking and jogging conditions. In comparison with standard shoes, wearing bionic shoes reduced the range of motion in some joints during movement and changed the peak angle in the sagittal, frontal and horizontal planes. Moreover, the vertical average loading rates were significantly larger than that of the standard shoes during jogging. The experimental groups showed larger PP or PTI in the foot regions examined except in the lateral forefoot. Also, increases the in the contact area of the midfoot with decreases in the contact area in heel were also observed. In some regions of the foot, the hard sole of the bionic shoes had a lower pressure than that of the soft sole. These findings indicate that the design of the bionic sole in this study can be used to increase toe scratching ability, increase neuromuscular strength and enhance stability and proprioceptive ability. However, the higher plantar pressures in some regions may increase the risk of overuse injuries. The findings from the study indicate preference for the hard bionic shoes during exercise compared to the soft sole.


Sign in / Sign up

Export Citation Format

Share Document