scholarly journals Molecular engineering of polymersome surface topology

2016 ◽  
Vol 2 (4) ◽  
pp. e1500948 ◽  
Author(s):  
Lorena Ruiz-Pérez ◽  
Lea Messager ◽  
Jens Gaitzsch ◽  
Adrian Joseph ◽  
Ludovico Sutto ◽  
...  

Biological systems exploit self-assembly to create complex structures whose arrangements are finely controlled from the molecular to mesoscopic level. We report an example of using fully synthetic systems that mimic two levels of self-assembly. We show the formation of vesicles using amphiphilic copolymers whose chemical nature is chosen to control both membrane formation and membrane-confined interactions. We report polymersomes with patterns that emerge by engineering interfacial tension within the polymersome surface. This allows the formation of domains whose topology is tailored by chemical synthesis, paving the avenue to complex supramolecular designs functionally similar to those found in viruses and trafficking vesicles.

1993 ◽  
Vol 328 ◽  
Author(s):  
Francis Garnier ◽  
A. Yassar ◽  
R. Hajlaoui ◽  
G. Horowitz ◽  
F. Deloffre

ABSTRACTConjugated oligomers form a fascinating class of molecular semiconductors, which open the perspective of control of electronic and structural properties through the variation of their chemical structure. For analysing the correlation between charge transport and structural properties, sexithiophene, 6T, was substituted by hexyl groups, both on the terminal α positions (α,ωDH6T) and as pendant groups in β position (β,β′DH6T). Structural characterizations by X-ray diffraction show that vacuum evaporated thin films of 6T and α,ωDH6T consist of layered structure in a monoclinic arrangement, with all-planar Molecules standing on the substrate, and that a much longer range ordering is observed when passing from 6T to α,ωDH6T, evidencing a large increase of molecular organization at the mesoscopic level. Electrical characterizations also indicate a significant enhancement of anisotropy of conductivity, with a ratio of 120 in favor of the conductivity along the stacking axis for α,ωDH6T. The charge carrier mobility, measured on field-effect transistors fabricated from these conjugated oligomers, also shows a large increase by a factor of 25 when passing from 6T to α,ωDH6T, and reaches a value close to 10-1cm2V-1s-1. In contrast, ββ′DH6T presents very low conductivity and mobility. These observations are attributed to the self-assembly properties brought by alkyl groups in α,ω position, and confirm the large potential of molecular engineering of organic semiconductors.


2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2018 ◽  
Author(s):  
Claudia Contini ◽  
Russell Pearson ◽  
Linge Wang ◽  
Lea Messager ◽  
Jens Gaitzsch ◽  
...  

<div><div><div><p>We report the design of polymersomes using a bottom-up approach where the self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)–poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We study this process in detail using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and stop-flow ab- sorbance disclosing the molecular and supramolecular anatomy of each structure observed. We report a clear evolution from disk micelles to vesicle to high-genus vesicles where each passage is controlled by pH switch or temperature. We show that the process can be rationalised adapting membrane physics theories disclosing important scaling principles that allow the estimation of the vesiculation minimal radius as well as chain entanglement and coupling. This allows us to propose a new approach to generate nanoscale vesicles with genus from 0 to 70 which have been very elusive and difficult to control so far.</p></div></div></div>


2018 ◽  
Author(s):  
Claudia Contini ◽  
Russell Pearson ◽  
Linge Wang ◽  
Lea Messager ◽  
Jens Gaitzsch ◽  
...  

<div><div><div><p>We report the design of polymersomes using a bottom-up approach where the self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)–poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We study this process in detail using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and stop-flow ab- sorbance disclosing the molecular and supramolecular anatomy of each structure observed. We report a clear evolution from disk micelles to vesicle to high-genus vesicles where each passage is controlled by pH switch or temperature. We show that the process can be rationalised adapting membrane physics theories disclosing important scaling principles that allow the estimation of the vesiculation minimal radius as well as chain entanglement and coupling. This allows us to propose a new approach to generate nanoscale vesicles with genus from 0 to 70 which have been very elusive and difficult to control so far.</p></div></div></div>


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 317-327
Author(s):  
Chenliang Shi ◽  
Ling Lin ◽  
Yukun Yang ◽  
Wenjia Luo ◽  
Maoqing Deng ◽  
...  

AbstractThe influence of density of amino groups, nanoparticles dimension and pH on the interaction between end-functionalized polymers and nanoparticles was extensively investigated in this study. PS–NH2 and H2N–PS–NH2 were prepared using reversible addition–fragmentation chain transfer polymerization and atom transfer radical polymerization. Zero-dimensional carbon dots with sulfonate groups, one-dimensional cellulose nanocrystals with sulfate groups and two-dimensional graphene with sulfonate groups in the aqueous phase were added into the toluene phase containing the aminated PS. The results indicate that aminated PS exhibited the strongest interfacial activity after compounding with sulfonated nanoparticles at a pH of 3. PS ended with two amino groups performed better in reducing the water/toluene interfacial tension than PS ended with only one amino group. The dimension of sulfonated nanoparticles also contributed significantly to the reduction in the water/toluene interfacial tension. The minimal interfacial tension was 4.49 mN/m after compounding PS–NH2 with sulfonated zero-dimensional carbon dots.


2021 ◽  
Vol 155 (1) ◽  
pp. 014904
Author(s):  
Alberto Scacchi ◽  
Maria Sammalkorpi ◽  
Tapio Ala-Nissila

2002 ◽  
pp. 326-327 ◽  
Author(s):  
Patrick Shahgaldian ◽  
Michele Cesario ◽  
Philippe Goreloff ◽  
Anthony W. Coleman

RSC Advances ◽  
2015 ◽  
Vol 5 (109) ◽  
pp. 89586-89593 ◽  
Author(s):  
Prasenjit Kabi ◽  
Saptarshi Basu ◽  
Swetaprovo Chaudhuri

Deployment order and self assembly of colloidal systems offer an effective medium to micro-engineer complex structures without involving sophisticated fabrication procedures.


Sign in / Sign up

Export Citation Format

Share Document