scholarly journals Eastward shift and extension of ENSO-induced tropical precipitation anomalies under global warming

2020 ◽  
Vol 6 (2) ◽  
pp. eaax4177 ◽  
Author(s):  
Zixiang Yan ◽  
Bo Wu ◽  
Tim Li ◽  
Mat Collins ◽  
Robin Clark ◽  
...  

During El Niño events, increased precipitation occurs over the equatorial central eastern Pacific, corresponding to enhanced convective heating that modulates global climate by exciting atmospheric teleconnections. These precipitation anomalies are projected to shift and extend eastward in response to global warming. We show that this predicted change is caused by narrowing of the meridional span of the underlying El Niño–related sea surface temperature (SST) anomalies that leads to intensification of the meridional gradient of the SST anomalies, strengthening boundary-layer moisture convergence over the equatorial eastern Pacific, and enhancing local positive precipitation anomalies. The eastward shift and extension of these anomalies also intensify and extend eastward negative precipitation anomalies over the tropical western North Pacific, by strengthening equatorward advection of low mean moist enthalpy. Changes in El Niño–induced tropical precipitation anomalies suggest that, under global warming, El Niño events decay faster after their peak phase, thus shortening their duration.

2015 ◽  
Vol 28 (19) ◽  
pp. 7561-7575 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Yerim Jeong ◽  
Jong-Seong Kug

Abstract This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.


2021 ◽  
pp. 1-60

Abstract The present study investigated impacts of strong and weak El Niño events on Central Asian precipitation variability from El Niño developing years to decaying years. It is found that strong El Niño events persistently enhance Central Asian precipitation from the mature winter to decaying summer. Large warm sea surface temperature (SST) anomalies in the tropical central-eastern Pacific induce anomalous upper-level divergence and updraft over Central Asia through large-scale convergence and divergence in the mature winter and decaying spring. Meanwhile, the associated wind anomalies induce anomalous eastward and northeastward moisture flux from the North Atlantic and Arabian Sea to Central Asia. Both anomalous ascent and moisture flux convergence favor above-normal precipitation over Central Asia in the mature winter and decaying spring. The El Niño events induced Central Asian precipitation anomalies are extended to the decaying summer due to the role of soil moisture. Increased rainfall in winter and spring enhances soil moisture in the following summer, which in turn, contributes to more precipitation in summer through modulating regional evaporation. During weak El Niño events, significant wet anomalies are only seen in the developing autumn, which result from anomalous southeastward moisture flux from the Arctic Ocean, and the abnormal signals are weak in the other seasons. The different responses of Central Asian precipitation to strong and weak El Niño events may be attributed to the difference in intensity of tropical SST anomalies between the two types of events.


2019 ◽  
Vol 54 (1-2) ◽  
pp. 885-899 ◽  
Author(s):  
Xiaoxiao Tan ◽  
Youmin Tang ◽  
Tao Lian ◽  
Zhixiong Yao ◽  
Xiaojing Li ◽  
...  

AbstractNumerous works have indicated that westerly wind bursts (WWBs) have a significant contribution to the development of El Niño events. However, the simulation of WWBs commonly suffers from large biases in the current generation of coupled general circulation models (CGCMs), limiting our ability to predict El Niño events. In this study, we introduce a WWBs parameterization scheme into the global coupled Community Earth System Model (CESM) to improve the representation of WWBs and to study the impacts of WWBs on El Niño-Southern Oscillation (ENSO) characteristics. It is found that CESM with the WWBs parameterization scheme can generate more realistic characteristics of WWBs, in particular their location and seasonal variation of occurrence. With the parameterized WWBs, the skewness of the Niño 3 index is increased, in better agreement with observation. Eastern Pacific El Niño and central Pacific El Niño events could be successfully reproduced in the model run with WWBs parameterization. Further diagnoses show that the enhanced horizontal advection in the central Pacific and vertical advection in the eastern Pacific, both of which are triggered by WWBs, are crucial factors responsible for the improvements in ENSO simulation. Clearly, WWBs have important effects on ENSO asymmetry and ENSO diversity.


2009 ◽  
Vol 22 (11) ◽  
pp. 3167-3174 ◽  
Author(s):  
Andréa S. Taschetto ◽  
Matthew H. England

Abstract This study investigates interseasonal and interevent variations in the impact of El Niño on Australian rainfall using available observations from the postsatellite era. Of particular interest is the difference in impact between classical El Niño events wherein peak sea surface temperature (SST) anomalies appear in the eastern Pacific and the recently termed El Niño “Modoki” events that are characterized by distinct warm SST anomalies in the central Pacific and weaker cold anomalies in the west and east of the basin. A clear interseasonal and interevent difference is apparent, with the maximum rainfall response for Modoki events occurring in austral autumn compared to austral spring for classical El Niños. Most interestingly, the Modoki and non-Modoki El Niño events exhibit a marked difference in rainfall impact over Australia: while classical El Niños are associated with a significant reduction in rainfall over northeastern and southeastern Australia, Modoki events appear to drive a large-scale decrease in rainfall over northwestern and northern Australia. In addition, rainfall variations during March–April–May are more sensitive to the Modoki SST anomaly pattern than the conventional El Niño anomalies to the east.


2009 ◽  
Vol 22 (6) ◽  
pp. 1499-1515 ◽  
Author(s):  
Jong-Seong Kug ◽  
Fei-Fei Jin ◽  
Soon-Il An

Abstract In this study, two types of El Niño events are classified based on spatial patterns of the sea surface temperature (SST) anomaly. One is the cold tongue (CT) El Niño, which can be regarded as the conventional El Niño, and the other the warm pool (WP) El Niño. The CT El Niño is characterized by relatively large SST anomalies in the Niño-3 region (5°S–5°N, 150°–90°W), while the WP El Niño is associated with SST anomalies mostly confined to the Niño-4 region (5°S–5°N, 160°E–150°W). In addition, spatial patterns of many atmospheric and oceanic variables are also distinctively different for the two types of El Niño events. Furthermore, the difference in the transition mechanism between the two types of El Niño is clearly identified. That is, the discharge process of the equatorial heat content associated with the WP El Niño is not efficient owing to the spatial structure of SST anomaly; as a result, it cannot trigger a cold event. It is also demonstrated that zonal advective feedback (i.e., zonal advection of mean SST by anomalous zonal currents) plays a crucial role in the development of a decaying SST anomaly associated with the WP El Niño, while thermocline feedback is a key process during the CT El Niño.


2019 ◽  
Vol 54 (1-2) ◽  
pp. 901-918 ◽  
Author(s):  
Aude Carréric ◽  
Boris Dewitte ◽  
Wenju Cai ◽  
Antonietta Capotondi ◽  
Ken Takahashi ◽  
...  

2019 ◽  
Vol 54 (1-2) ◽  
pp. 351-372 ◽  
Author(s):  
Christina M. Patricola ◽  
John P. O’Brien ◽  
Mark D. Risser ◽  
Alan M. Rhoades ◽  
Travis A. O’Brien ◽  
...  

Abstract Until recently, the El Niño–Southern Oscillation (ENSO) was considered a reliable source of winter precipitation predictability in the western US, with a historically strong link between extreme El Niño events and extremely wet seasons. However, the 2015–2016 El Niño challenged our understanding of the ENSO-precipitation relationship. California precipitation was near-average during the 2015–2016 El Niño, which was characterized by warm sea surface temperature (SST) anomalies of similar magnitude compared to the extreme 1997–1998 and 1982–1983 El Niño events. We demonstrate that this precipitation response can be explained by El Niño’s spatial pattern, rather than internal atmospheric variability. In addition, observations and large-ensembles of regional and global climate model simulations indicate that extremes in seasonal and daily precipitation during strong El Niño events are better explained using the ENSO Longitude Index (ELI), which captures the diversity of ENSO’s spatial patterns in a single metric, compared to the traditional Niño3.4 index, which measures SST anomalies in a fixed region and therefore fails to capture ENSO diversity. The physically-based ELI better explains western US precipitation variability because it tracks the zonal shifts in tropical Pacific deep convection that drive teleconnections through the response in the extratropical wave-train, integrated vapor transport, and atmospheric rivers. This research provides evidence that ELI improves the value of ENSO as a predictor of California’s seasonal hydroclimate extremes compared to traditional ENSO indices, especially during strong El Niño events.


Sign in / Sign up

Export Citation Format

Share Document