El Niño Modoki Impacts on Australian Rainfall

2009 ◽  
Vol 22 (11) ◽  
pp. 3167-3174 ◽  
Author(s):  
Andréa S. Taschetto ◽  
Matthew H. England

Abstract This study investigates interseasonal and interevent variations in the impact of El Niño on Australian rainfall using available observations from the postsatellite era. Of particular interest is the difference in impact between classical El Niño events wherein peak sea surface temperature (SST) anomalies appear in the eastern Pacific and the recently termed El Niño “Modoki” events that are characterized by distinct warm SST anomalies in the central Pacific and weaker cold anomalies in the west and east of the basin. A clear interseasonal and interevent difference is apparent, with the maximum rainfall response for Modoki events occurring in austral autumn compared to austral spring for classical El Niños. Most interestingly, the Modoki and non-Modoki El Niño events exhibit a marked difference in rainfall impact over Australia: while classical El Niños are associated with a significant reduction in rainfall over northeastern and southeastern Australia, Modoki events appear to drive a large-scale decrease in rainfall over northwestern and northern Australia. In addition, rainfall variations during March–April–May are more sensitive to the Modoki SST anomaly pattern than the conventional El Niño anomalies to the east.

2015 ◽  
Vol 28 (14) ◽  
pp. 5795-5812 ◽  
Author(s):  
Wenjun Zhang ◽  
Haiyan Li ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker ◽  
Andrew G. Turner ◽  
...  

Abstract Previous studies documented that a distinct southward shift of central Pacific low-level wind anomalies occurring during the ENSO decaying phase is caused by an interaction between the western Pacific annual cycle and El Niño–Southern Oscillation (ENSO) variability. The present study finds that the meridional movement of the central Pacific wind anomalies appears only during traditional eastern Pacific El Niño (EP El Niño) events rather than in central Pacific El Niño (CP El Niño) events in which sea surface temperature (SST) anomalies are confined to the central Pacific. The zonal structure of ENSO-related SST anomalies therefore has an important effect on meridional asymmetry in the associated atmospheric response and its modulation by the annual cycle. In contrast to EP El Niño events, the SST anomalies of CP El Niño events extend farther west toward the warm pool region with its climatological warm SSTs. In the warm pool region, relatively small SST anomalies are thus able to excite convection anomalies on both sides of the equator, even with a meridionally asymmetric SST background state. Therefore, almost meridionally symmetric precipitation and wind anomalies are observed over the central Pacific during the decaying phase of CP El Niño events. The SST anomaly pattern of La Niña events is similar to CP El Niño events with a reversed sign. Accordingly, no distinct southward displacement of the atmospheric response occurs over the central Pacific during the La Niña decaying phase. These results have important implications for ENSO climate impacts over East Asia, since the anomalous low-level anticyclone over the western North Pacific is an integral part of the annual cycle–modulated ENSO response.


2016 ◽  
Vol 29 (3) ◽  
pp. 1127-1142 ◽  
Author(s):  
Wei Tan ◽  
Xin Wang ◽  
Weiqiang Wang ◽  
Chunzai Wang ◽  
Juncheng Zuo

Abstract This study investigates variations of sea surface temperature (SST) anomalies in the South China Sea (SCS) during developing autumn of various El Niño events. The warm SST anomalies are observed in the SCS for canonical El Niño and El Niño Modoki I, whereas the cold SST anomalies are found for El Niño Modoki II. The ocean heat budget analyses show that the latent heat flux change induced by various types of El Niño events is a major contributor to the SCS SST variations. An anomalous anticyclone resides near the Philippine Sea for canonical El Niño and El Niño Modoki I, which induces the southerly wind anomalies over the SCS and thus weakens the climatological northeasterly in boreal autumn. The weakened surface wind speed reduces heat loss from the ocean, leading to a warmer state in the SCS. However, for El Niño Modoki II, the anomalous anticyclone shifts westward to the west of the SCS, and thus the northeasterly wind anomalies appear in the SCS. The northeasterly anomalies enhance the climatological northeasterly monsoon, increase the wind speed, and increase heat loss from the ocean, thus resulting in a cooling in the SCS. The anomalous anticyclone associated with El Niño events also increases shortwave radiation. The increases of the shortwave radiation can also contribute to the SCS warming for canonical El Niño and El Niño Modoki I in addition to the warm effect from the latent heat flux. Because the cooling effect from the latent heat flux is larger than that of the shortwave radiation for El Niño Modoki II, the SCS for El Niño Modoki II tends to be cool.


2015 ◽  
Vol 28 (19) ◽  
pp. 7561-7575 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Yerim Jeong ◽  
Jong-Seong Kug

Abstract This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.


2020 ◽  
Vol 33 (12) ◽  
pp. 5239-5251
Author(s):  
Feng Jiang ◽  
Wenjun Zhang ◽  
Malte F. Stuecker ◽  
Fei-Fei Jin

AbstractPrevious studies have shown that nonlinear atmospheric interactions between ENSO and the warm pool annual cycle generates a combination mode (C-mode), which is responsible for the termination of strong El Niño events and the development of the anomalous anticyclone over the western North Pacific (WNP). However, the C-mode has experienced a remarkable decadal change in its characteristics around the early 2000s. The C-mode in both pre- and post-2000 exhibits its characteristic anomalous atmospheric circulation meridional asymmetry but with somewhat different spatial structures and time scales. During 1979–99, the C-mode pattern featured prominent westerly surface wind anomalies in the southeastern tropical Pacific and anticyclonic anomalies over the WNP. In contrast, the C-mode-associated westerly anomalies were shifted farther westward to the central Pacific and the WNP anticyclone was farther westward extended and weaker after 2000. These different C-mode patterns were accompanied by distinct climate impacts over the Indo-Pacific region. The decadal differences of the C-mode are tightly connected with the ENSO regime shift around 2000; that is, the occurrence of central Pacific (CP) El Niño events with quasi-biennial and decadal periodicities increased while the occurrence of eastern Pacific (EP) El Niño events with quasi-quadrennial periodicity decreased. The associated near-annual combination tone periodicities of the C-mode also changed in accordance with these changes in the dominant ENSO frequency between the two time periods. Numerical model experiments further confirm the impacts of the ENSO regime shift on the C-mode characteristics. These results have important implications for understanding the C-mode dynamics and improving predictions of its climate impacts.


2020 ◽  
Author(s):  
Lina Teckentrup ◽  
Martin G. De Kauwe ◽  
Andrew J. Pitman ◽  
Benjamin Smith

Abstract. The El Niño‐Southern Oscillation (ENSO) influences the global climate and the variability in the terrestrial carbon cycle on interannual timescales. Two different expressions of El Niño have recently been identified: (i) Central–Pacific (CP) and (ii) Eastern–Pacific (EP). Both types of El Nino are characterised by above average sea surface temperature anomalies in the respective locations. Studies exploring the impact of these expressions of El Niño on the carbon cycle have identified changes in the amplitude of the concentration of interannual atmospheric carbon dioxide (CO2) variability, as well as different lags in terrestrial CO2 release to the atmosphere following increased tropical near surface air temperature. We employ the dynamic global vegetation model LPJ–GUESS within a synthetic experimental framework to examine the sensitivity and potential long term impacts of these two expressions of El Niño on the terrestrial carbon cycle. We manipulated the occurrence of CP and EP events in two climate reanalysis datasets during the later half of the 20th and early 21st century by replacing all EP with CP and separately all CP with EP El Niño events. We found that the different expressions of El Niño affect interannual variability in the terrestrial carbon cycle. However, the effect on longer timescales was negligible for both climate reanalysis datasets. We conclude that capturing any future trends in the relative frequency of CP and EP El Niño events may not be critical for robust simulations of the terrestrial carbon cycle.


2021 ◽  
pp. 1-60

Abstract The present study investigated impacts of strong and weak El Niño events on Central Asian precipitation variability from El Niño developing years to decaying years. It is found that strong El Niño events persistently enhance Central Asian precipitation from the mature winter to decaying summer. Large warm sea surface temperature (SST) anomalies in the tropical central-eastern Pacific induce anomalous upper-level divergence and updraft over Central Asia through large-scale convergence and divergence in the mature winter and decaying spring. Meanwhile, the associated wind anomalies induce anomalous eastward and northeastward moisture flux from the North Atlantic and Arabian Sea to Central Asia. Both anomalous ascent and moisture flux convergence favor above-normal precipitation over Central Asia in the mature winter and decaying spring. The El Niño events induced Central Asian precipitation anomalies are extended to the decaying summer due to the role of soil moisture. Increased rainfall in winter and spring enhances soil moisture in the following summer, which in turn, contributes to more precipitation in summer through modulating regional evaporation. During weak El Niño events, significant wet anomalies are only seen in the developing autumn, which result from anomalous southeastward moisture flux from the Arctic Ocean, and the abnormal signals are weak in the other seasons. The different responses of Central Asian precipitation to strong and weak El Niño events may be attributed to the difference in intensity of tropical SST anomalies between the two types of events.


2020 ◽  
Vol 33 (8) ◽  
pp. 3271-3288
Author(s):  
Juan Feng ◽  
Wen Chen ◽  
Xiaocong Wang

AbstractThe El Niño Modoki–induced anomalous western North Pacific anticyclone (WNPAC) undergoes an interesting reintensification process in the El Niño Modoki decaying summer, the period when El Niño Modoki decays but warm sea surface temperature (SST) anomalies over the tropical North Atlantic (TNA) and cold SST anomalies over the central-eastern Pacific (CEP) dominate. In this study, the region (TNA or CEP) in which the SST anomalies exert a relatively important influence on reintensification of the WNPAC is investigated. Observational analysis demonstrates that when only anomalous CEP SST cooling occurs, the WNPAC experiences a weak reintensification. In contrast, when only anomalous TNA SST warming emerges, the WNPAC experiences a remarkable reintensification. Numerical simulation analysis demonstrates that even though the same magnitude of CEP SST cooling and TNA warming is respectively set to force the atmospheric general circulation model, the response of the WNPAC is still much stronger in the TNA warming experiment than in the CEP cooling experiment. Further analysis demonstrates that this difference is caused by the distinct location of the effective tropical forcing between the CEP SST cooling and TNA SST warming for producing a WNPAC. The CEP cooling-induced effective anomalous diabatic cooling is located in the central Pacific, by which the forced anticyclone becomes gradually weak from the central Pacific to the western North Pacific. Thus, a weak WNPAC is produced. In contrast, as the TNA SST warming–induced effective anomalous diabatic cooling is just located in the western North Pacific via a Kelvin wave–induced Ekman divergence process, the forced anticyclone is significant and powerful in the western North Pacific.


2015 ◽  
Vol 11 (10) ◽  
pp. 1325-1333 ◽  
Author(s):  
K. Schollaen ◽  
C. Karamperidou ◽  
P. Krusic ◽  
E. Cook ◽  
G. Helle

Abstract. Indonesia's climate is dominated by the equatorial monsoon system, and has been linked to El Niño-Southern Oscillation (ENSO) events that often result in extensive droughts and floods over the Indonesian archipelago. In this study we investigate ENSO-related signals in a tree-ring δ18O record (1900–2007) of Javanese teak. Our results reveal a clear influence of Warm Pool (central Pacific) El Niño events on Javanese tree-ring δ18O, and no clear signal of Cold Tongue (eastern Pacific) El Niño events. These results are consistent with the distinct impacts of the two ENSO flavors on Javanese precipitation, and illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics, as well as the potential of palaeoclimate proxy records from appropriately selected tropical regions for reconstructing past variability of. ENSO flavors.


2019 ◽  
Vol 54 (1-2) ◽  
pp. 885-899 ◽  
Author(s):  
Xiaoxiao Tan ◽  
Youmin Tang ◽  
Tao Lian ◽  
Zhixiong Yao ◽  
Xiaojing Li ◽  
...  

AbstractNumerous works have indicated that westerly wind bursts (WWBs) have a significant contribution to the development of El Niño events. However, the simulation of WWBs commonly suffers from large biases in the current generation of coupled general circulation models (CGCMs), limiting our ability to predict El Niño events. In this study, we introduce a WWBs parameterization scheme into the global coupled Community Earth System Model (CESM) to improve the representation of WWBs and to study the impacts of WWBs on El Niño-Southern Oscillation (ENSO) characteristics. It is found that CESM with the WWBs parameterization scheme can generate more realistic characteristics of WWBs, in particular their location and seasonal variation of occurrence. With the parameterized WWBs, the skewness of the Niño 3 index is increased, in better agreement with observation. Eastern Pacific El Niño and central Pacific El Niño events could be successfully reproduced in the model run with WWBs parameterization. Further diagnoses show that the enhanced horizontal advection in the central Pacific and vertical advection in the eastern Pacific, both of which are triggered by WWBs, are crucial factors responsible for the improvements in ENSO simulation. Clearly, WWBs have important effects on ENSO asymmetry and ENSO diversity.


Sign in / Sign up

Export Citation Format

Share Document