scholarly journals Trappc9 deficiency in mice impairs learning and memory by causing imbalance of dopamine D1 and D2 neurons

2020 ◽  
Vol 6 (47) ◽  
pp. eabb7781
Author(s):  
Yuting Ke ◽  
Meiqian Weng ◽  
Gaurav Chhetri ◽  
Muhammad Usman ◽  
Yan Li ◽  
...  

Genetic mutations in the gene encoding transport protein particle complex 9 (trappc9), a subunit of TRAPP that acts as a guanine nucleotide exchange factor for rab proteins, cause intellectual disability with brain structural malformations by elusive mechanisms. Here, we report that trappc9-deficient mice exhibit a broad range of behavioral deficits and postnatal delay in growth of the brain. Contrary to volume decline of various brain structures, the striatum of trappc9 null mice was enlarged. An imbalance existed between dopamine D1 and D2 receptor containing neurons in the brain of trappc9-deficient mice; pharmacological manipulation of dopamine receptors improved performances of trappc9 null mice to levels of wild-type mice on cognitive tasks. Loss of trappc9 compromised the activation of rab11 in the brain and resulted in retardation of endocytic receptor recycling in neurons. Our study elicits a pathogenic mechanism and a potential treatment for trappc9-linked disorders including intellectual disability.

2019 ◽  
Author(s):  
Jaewoo Hong ◽  
Yurim Kim ◽  
Sudhirkumar Yanpallewar ◽  
P. Charles Lin

AbstractVav1 is a Rho/Rac guanine nucleotide exchange factor expressed in hematopoietic and endothelial cells that are involved in a wide range of cellular functions. It is also stabilized under hypoxic conditions when it regulates the accumulation of the transcription factor HIF-1α, which activates the transcription of target genes to orchestrate a cellular response to low oxygen. One of the genes induced by HIF-1α is GLUT-1, which is the major glucose transporter expressed in vessels that supply energy to the brain. Here, we identify a role for Vav1 in providing glucose to the brain. We found that Vav1 deficiency downregulates HIF-1α and GLUT-1 levels in endothelial cells, including blood-brain barrier cells. This downregulation of GLUT-1, in turn, reduced glucose uptake to endothelial cells both in vitro and in vivo, and reduced glucose levels in the brain.Furthermore, endothelial cell-specific Vav1 knock-out in mice, which caused glucose uptake deficiency, also led to a learning delay in fear conditioning experiments. Our results suggest that Vav1 promotes learning by activating HIF-1α and GLUT-1 and thereby distributing glucose to the brain. They further demonstrate the importance of glucose transport by endothelial cells in brain functioning and reveal a potential new axis for targeting GLUT-1 deficiency syndromes and other related brain diseases.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Seidu A. Richard

Gliomas are prime brain cancers which are initiated by malignant modification of neural stem cells, progenitor cells and differentiated glial cells such as astrocyte, oligodendrocyte as well as ependymal cells. Exchange proteins directly activated by cAMP (EPACs) are crucial cyclic adenosine 3’,5’-monophosphate (cAMP)-determined signaling pathways. Cyclic AMP-intermediated signaling events were utilized to transduce protein kinase A (PKA) leading to the detection of EPACs or cAMP-guanine exchange factors (cAMP-GEFs). EPACs have been detected as crucial proteins associated with the pathogenesis of neurological disorders as well as numerous human diseases. EPAC proteins have two isoforms. These isoforms are EPAC1 and EPAC2. EPAC2 also known as Rap guanine nucleotide exchange factor 4 (RAPGEF4) is generally expression in all neurites. Higher EAPC2 levels was detected in the cortex, hippocampus as well as striatum of adult mouse brain. Activation as well as over-secretion of EPAC2 triggers apoptosis in neurons and EPAC-triggered apoptosis was intermediated via the modulation of Bcl-2 interacting member protein (BIM). EPAC2 secretory levels has proven to be more in low-grade clinical glioma than high-grade clinical glioma. This review therefore explores the effects of EPAC2/RAPGEF4 on the pathogenesis of glioma instead of EPAC1 because EPAC2 and not EPAC1 is predominately expressed in the brain. Therefore, EPAC2 is most likely to modulate glioma pathogenesis rather than EPAC1.


2010 ◽  
Vol 42 (6) ◽  
pp. 486-488 ◽  
Author(s):  
Cheryl Shoubridge ◽  
Patrick S Tarpey ◽  
Fatima Abidi ◽  
Sarah L Ramsden ◽  
Sinitdhorn Rujirabanjerd ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document