adult mouse brain
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 92)

H-INDEX

65
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Thomas Wälchli ◽  
Jeroen Bisschop ◽  
Arttu Miettinen ◽  
Alexandra Ulmann-Schuler ◽  
Christoph Hintermüller ◽  
...  

2021 ◽  
Vol 2 (3) ◽  
pp. 100665
Author(s):  
Zhen Xu ◽  
Bo Peng ◽  
Yanxia Rao

2021 ◽  
Vol 15 ◽  
Author(s):  
Feng Guo ◽  
Yi-Fan Zhang ◽  
Kun Liu ◽  
Xu Huang ◽  
Rui-Xue Li ◽  
...  

Chronic alcohol consumption causes cognitive impairments accompanying with white matter atrophy. Recent evidence has shown that myelin dynamics remain active and are important for brain functions in adulthood. For example, new myelin generation is required for learning and memory functions. However, it remains undetermined whether alcohol exposure can alter myelin dynamics in adulthood. In this study, we examine the effect of chronic alcohol exposure on myelin dynamics by using genetic approaches to label newly generated myelin (NG2-CreERt; mT/mG). Our results indicated that alcohol exposure (either 5% or 10% in drinking water) for 3 weeks remarkably reduced mGFP + /NG2- new myelin and mGFP + /CC1 + new oligodendrocytes in the prefrontal cortex and corpus callosum of 6-month-old NG2-CreERt; mT/mG mice as compared to controls without changing the mGFP + /NG2 + oligodendrocyte precursor cells (OPCs) density, suggesting that alcohol exposure may inhibit oligodendrocyte differentiation. In support with these findings, the alcohol exposure did not significantly alter apoptotic cell number or overall MBP expression in the brains. Further, the alcohol exposure decreased the histone deacetylase1 (HDAC1) expression in mGFP + /NG2 + OPCs, implying epigenetic mechanisms were involved in the arrested OPC differentiation. Together, our results indicate that chronic exposure to alcohol can inhibit myelinogenesis in the adult mouse brain and that may contribute to alcohol-related cognitive impairments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yoshihiko Yamazaki ◽  
Yoshifumi Abe ◽  
Satoshi Fujii ◽  
Kenji F. Tanaka

AbstractThe juvenile brain presents plasticity. Oligodendrocytes are the myelinating cells of the central nervous system and myelination can be adaptive. Plasticity decreases from juvenile to adulthood. The mechanisms involving oligodendrocytes underlying plasticity are unclear. Here, we show Na+-K+-Cl– co-transporter 1 (NKCC1), highly expressed in the juvenile mouse brain, regulates the oligodendrocyte activity from juvenile to adulthood in mice, as shown by optogenetic manipulation of oligodendrocytes. The reduced neuronal activity in adults was restored by Nkcc1 overexpression in oligodendrocytes. Moreover, in adult mice overexpressing Nkcc1, long-term potentiation and learning were facilitated compared to age-matched controls. These findings demonstrate that NKCC1 plays a regulatory role in the age-dependent activity of oligodendrocytes, furthermore inducing activation of NKCC1 in oligodendrocytes can restore neuronal plasticity in the adult mouse brain.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ken Miya ◽  
Kazuko Keino-Masu ◽  
Takuya Okada ◽  
Kenta Kobayashi ◽  
Masayuki Masu

The heparan sulfate 6-O-endosulfatases, Sulfatase 1 (Sulf1), and Sulfatase 2 (Sulf2), are extracellular enzymes that regulate cellular signaling by removing 6-O-sulfate from the heparan sulfate chain. Although previous studies have revealed that Sulfs are essential for normal development, their functions in the adult brain remain largely unknown. To gain insight into their neural functions, we used in situ hybridization to systematically examine Sulf1/2 mRNA expression in the adult mouse brain. Sulf1 and Sulf2 mRNAs showed distinct expression patterns, which is in contrast to their overlapping expression in the embryonic brain. In addition, we found that Sulf1 was distinctly expressed in the nucleus accumbens shell, the posterior tail of the striatum, layer 6 of the cerebral cortex, and the paraventricular nucleus of the thalamus, all of which are target areas of dopaminergic projections. Using double-labeling techniques, we showed that Sulf1-expressing cells in the above regions coincided with cells expressing the dopamine D1 and/or D2 receptor. These findings implicate possible roles of Sulf1 in modulation of dopaminergic transmission and dopamine-mediated behaviors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph Dwyer ◽  
M. Desmond Ramirez ◽  
Paul S. Katz ◽  
Rolf O. Karlstrom ◽  
Joseph Bergan

AbstractTechniques used to clear biological tissue for fluorescence microscopy are essential to connect anatomical principles at levels ranging from subcellular to the whole animal. Here we report a simple and straightforward approach to efficiently render opaque tissue samples transparent and show that this approach can be modified to rapidly label intact tissue samples with antibodies for large volume fluorescence microscopy. This strategy applies a magnetohydrodynamic (MHD) force to accelerate the removal of lipids from tissue samples at least as large as an intact adult mouse brain. We also show that MHD force can be used to accelerate antibody penetration into tissue samples. This strategy complements a growing array of tools that enable high-resolution 3-dimensional anatomical analyses in intact tissues using fluorescence microscopy. MHD-accelerated clearing is simple, fast, reliable, inexpensive, provides good thermal regulation, and is compatible with existing strategies for high-quality fluorescence microscopy of intact tissues.


2021 ◽  
pp. JN-RM-1893-20
Author(s):  
Katherine E. Prater ◽  
Macarena S. Aloi ◽  
Jasmine L. Pathan ◽  
Chloe N. Winston ◽  
Rachel A. Chernoff ◽  
...  

PLoS Biology ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. e3001341
Author(s):  
Shaina Lu ◽  
Cantin Ortiz ◽  
Daniel Fürth ◽  
Stephan Fischer ◽  
Konstantinos Meletis ◽  
...  

High-throughput, spatially resolved gene expression techniques are poised to be transformative across biology by overcoming a central limitation in single-cell biology: the lack of information on relationships that organize the cells into the functional groupings characteristic of tissues in complex multicellular organisms. Spatial expression is particularly interesting in the mammalian brain, which has a highly defined structure, strong spatial constraint in its organization, and detailed multimodal phenotypes for cells and ensembles of cells that can be linked to mesoscale properties such as projection patterns, and from there, to circuits generating behavior. However, as with any type of expression data, cross-dataset benchmarking of spatial data is a crucial first step. Here, we assess the replicability, with reference to canonical brain subdivisions, between the Allen Institute’s in situ hybridization data from the adult mouse brain (Allen Brain Atlas (ABA)) and a similar dataset collected using spatial transcriptomics (ST). With the advent of tractable spatial techniques, for the first time, we are able to benchmark the Allen Institute’s whole-brain, whole-transcriptome spatial expression dataset with a second independent dataset that similarly spans the whole brain and transcriptome. We use regularized linear regression (LASSO), linear regression, and correlation-based feature selection in a supervised learning framework to classify expression samples relative to their assayed location. We show that Allen Reference Atlas labels are classifiable using transcription in both data sets, but that performance is higher in the ABA than in ST. Furthermore, models trained in one dataset and tested in the opposite dataset do not reproduce classification performance bidirectionally. While an identifying expression profile can be found for a given brain area, it does not generalize to the opposite dataset. In general, we found that canonical brain area labels are classifiable in gene expression space within dataset and that our observed performance is not merely reflecting physical distance in the brain. However, we also show that cross-platform classification is not robust. Emerging spatial datasets from the mouse brain will allow further characterization of cross-dataset replicability ultimately providing a valuable reference set for understanding the cell biology of the brain.


2021 ◽  
Author(s):  
Zayna Chaker ◽  
Corina Segalada ◽  
Fiona Doetsch

Neural stem cells (NSCs) in the adult mouse brain contribute to lifelong brain plasticity. NSCs in the adult ventricular-subventricular zone (V-SVZ) are heterogeneous and, depending on their location in the niche, give rise to different subtypes of olfactory bulb interneurons. Here, we show that during pregnancy multiple regionally-distinct NSCs are dynamically recruited at different times. Coordinated temporal activation of these NSC pools generates sequential waves of short-lived olfactory bulb interneuron subtypes that mature in the mother around birth and in the perinatal care period. Concomitant with neuronal addition, oligodendrocyte progenitors also transiently increase in the olfactory bulb. Thus, life experiences, such as pregnancy, can trigger transient neurogenesis and gliogenesis under tight spatial and temporal control, and may provide a novel substrate for brain plasticity in anticipation of temporary physiological demand.


Sign in / Sign up

Export Citation Format

Share Document