scholarly journals The Formation of Population III Binaries from Cosmological Initial Conditions

Science ◽  
2009 ◽  
Vol 325 (5940) ◽  
pp. 601-605 ◽  
Author(s):  
Matthew J. Turk ◽  
Tom Abel ◽  
Brian O'Shea

Previous high-resolution cosmological simulations predicted that the first stars to appear in the early universe were very massive and formed in isolation. Here, we discuss a cosmological simulation in which the central 50 M⊙ (where M⊙ is the mass of the Sun) clump breaks up into two cores having a mass ratio of two to one, with one fragment collapsing to densities of 10−8 grams per cubic centimeter. The second fragment, at a distance of ~800 astronomical units, is also optically thick to its own cooling radiation from molecular hydrogen lines but is still able to cool via collision-induced emission. The two dense peaks will continue to accrete from the surrounding cold gas reservoir over a period of ~105 years and will likely form a binary star system.

Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 46-49 ◽  
Author(s):  
A. Gould ◽  
A. Udalski ◽  
I.-G. Shin ◽  
I. Porritt ◽  
J. Skowron ◽  
...  

Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth’s) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet’s temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.


Nature ◽  
1942 ◽  
Vol 150 (3810) ◽  
pp. 545-545

Science ◽  
2014 ◽  
Vol 344 (6181) ◽  
pp. 275-277 ◽  
Author(s):  
E. Kruse ◽  
E. Agol

2014 ◽  
Vol 9 (S310) ◽  
pp. 86-87
Author(s):  
D. Bancelin ◽  
E. Pilat-Lohinger ◽  
S. Eggl ◽  
R. Dvorak

AbstractBy now, observations of exoplanets have found more than 50 binary star systems hosting 71 planets. We expect these numbers to increase as more than 70% of the main sequence stars in the solar neighborhood are members of binary or multiple systems. The planetary motion in such systems depends strongly on both the parameters of the stellar system (stellar separation and eccentricity) and the architecture of the planetary system (number of planets and their orbital behaviour). In case a terrestrial planet moves in the so-called habitable zone (HZ) of its host star, the habitability of this planet depends on many parameters. A crucial factor is certainly the amount of water. We investigate in this work the transport of water from beyond the snow-line to the HZ in a binary star system and compare it to a single star system.


2008 ◽  
Vol 387 (2) ◽  
pp. 481-496 ◽  
Author(s):  
N. J. Dunstone ◽  
G. A. J. Hussain ◽  
A. Collier Cameron ◽  
S. C. Marsden ◽  
M. Jardine ◽  
...  

2018 ◽  
Author(s):  
Salvador Barquin

Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988±0.000001 d, amplitude of 0.34±0.02 V Mag, primary minimum epoch HJD 2457994.2756±0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.


Sign in / Sign up

Export Citation Format

Share Document