Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor

Science ◽  
2013 ◽  
Vol 339 (6119) ◽  
pp. 557-560 ◽  
Author(s):  
H. J. Mamin ◽  
M. Kim ◽  
M. H. Sherwood ◽  
C. T. Rettner ◽  
K. Ohno ◽  
...  

Extension of nuclear magnetic resonance (NMR) to nanoscale samples has been a longstanding challenge because of the insensitivity of conventional detection methods. We demonstrated the use of an individual, near-surface nitrogen-vacancy (NV) center in diamond as a sensor to detect proton NMR in an organic sample located external to the diamond. Using a combination of electron spin echoes and proton spin manipulation, we showed that the NV center senses the nanotesla field fluctuations from the protons, enabling both time-domain and spectroscopic NMR measurements on the nanometer scale.

2015 ◽  
Vol 7 (14) ◽  
pp. 5731-5739 ◽  
Author(s):  
Gaozhi Ou ◽  
Rui Hu ◽  
Liangxiao Zhang ◽  
Peiwu Li ◽  
Xinjian Luo ◽  
...  

This review focuses on the advances in the sensing and identification of adulteration of olive oil, including optical sensing, chromatography, nuclear magnetic resonance, and DNA-based methods.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. JM1-JM11 ◽  
Author(s):  
Jakob Juul Larsen ◽  
Lichao Liu ◽  
Denys Grombacher ◽  
Gordon Osterman ◽  
Esben Auken

Surface nuclear magnetic resonance (NMR) is emerging as a competitive method for aquifer exploration due to its direct sensitivity to subsurface water, but the method still has several shortcomings, for example, a signal-to-noise ratio that is often poor, long survey times, and bulky equipment. We have developed Apsu, a new surface NMR system designed for near-surface groundwater investigations. It provides several features such as a compact transmitter unit, separated, small receiver coils, wireless connections between multiple receivers, quasi-zero dead time, and robust phase determination. The transmitter unit is powered by a lightweight generator, and it drives a triangular current in an untuned [Formula: see text] transmitter coil. The peak current of the triangular waveform is up to 145 A, with an effective peak current of 105 A at a Larmor frequency of 2 kHz, corresponding to a 30 m depth of investigation. The frequency and amplitude in each half-oscillation of the transmit pulses can be modulated independently, which gives great flexibility in the pulse design. The receiver uses low-noise preamplifiers and multiple receivers linked to a central unit through Wi-Fi. The use of small receiver coils and wireless connections to multichannel receivers greatly improves the layout configuration flexibility and survey efficiency. The performance of the system under field conditions is demonstrated with high-quality data collected near Silkeborg, Denmark, using on-resonance and numerically optimized modulation pulses.


2008 ◽  
Vol 8 (2) ◽  
pp. 887-893 ◽  
Author(s):  
Özlen F. Erdem ◽  
André Pampel ◽  
Dieter Michel

Nuclear magnetic resonance (NMR) and broadband dielectric spectroscopy are used to investigate the dynamics of small glass-forming molecules confined to restricted geometries. Ethylene glycol molecules are embedded in the supercages of NaX zeolites. The combined application of NMR and broadband dielectric spectroscopy advances the understanding of the slowing down of the motion near the glass transition temperature of these confined molecules. In combination with nuclear spin relaxation and nuclear magnetic resonance spectroscopy, dielectric relaxation studies on glass forming molecules allow conclusions on the character of the motion. High resolution 1H magic angle spinning (MAS) NMR measurements not only enable a characterisation of the state of the adsorbed molecules via a chemical shift analysis. By means of an analysis of MAS spinning sidebands we may also estimate a correlation time the meaning of which will be discussed in comparison to the results of longitudinal proton spin relaxation measurements. In addition to broadband dielectric spectroscopy slow molecular motions of partially deuterated ethylene glycol adsorbed in NaX are studied by means of 2H NMR line-shape analysis.


Sign in / Sign up

Export Citation Format

Share Document