Pleistocene Glaciation in the Blue Ridge Province, Southern Appalachian Mountains, North Carolina

Science ◽  
1973 ◽  
Vol 181 (4100) ◽  
pp. 651-653
Author(s):  
J. O. Berkland ◽  
L. A. Raymond
2018 ◽  
Vol 33 (1) ◽  
pp. 283-299 ◽  
Author(s):  
Douglas K. Miller ◽  
David Hotz ◽  
Jessica Winton ◽  
Lukas Stewart

Abstract Rainfall observations in the Pigeon River basin of the southern Appalachian Mountains over a 5-yr period (2009–14) are examined to investigate the synoptic patterns responsible for downstream flooding events as observed near Knoxville, Tennessee, and Asheville, North Carolina. The study is designed to address the hypothesis that atmospheric rivers (ARs) are primarily responsible for the highest accumulation periods observed by the gauge network and that these periods correspond to events having a societal hazard (flooding). The upper 2.5% (extreme) and middle 33% (normal) rainfall events flagged using the gauge network observations showed that half of the heaviest rainfall cases were associated with an AR. Of those extreme events having an AR influence, over 73% had a societal hazard defined as minor-to-major flooding at the USGS river gauge located in Newport, Tennessee, or flooding observations for locations near the Tennessee and North Carolina border reported in the Storm Data publication. Composites of extreme AR-influenced events revealed a synoptic pattern consisting of a highly amplified slow-moving positively tilted trough, suggestive of the anticyclonic Rossby wave breaking scenario that sometimes precedes hydrological events of high impact. Composites of extreme non-AR events indicated a large-scale weather pattern typical of a warm season scenario in which an anomalous low-level cyclone, cut off far from the primary upper-tropospheric jet, was located in the southeastern United States. AR events without a societal hazard represented a large fraction (75%–88%) of all ARs detected during the study period. Synoptic-scale weather patterns of these events were fast moving and had weak low-level atmospheric dynamics.


1988 ◽  
Vol 30 (1) ◽  
pp. 7-11 ◽  
Author(s):  
David S. Shafer

Analysis of colluvial, fluvial, and bog sediments at Flat Laurel Gap (1500 m) in the Blue Ridge Mountains of North Carolina provides a record of late Quaternary landscape evolution. Thermoluminescence (TL) analysis provides the first absolute-age determinations available for presumed periglacial deposits in the southern Appalachian Mountains. The Pleistocene/Holocene transition, dated between 11,900 and 10,100 yr B.P., represents a period of climatic amelioration and a change from colluvial to alluvial processes. A TL date of 7400 ± 1000 yr B.P. for matrix within a block-stream indicates possible early Holocene reworking of Pleistocene periglacial colluvium. Organic sediment deposition in a bog that began about 3400 yr B.P. increased in rate from 0.02 to 0.09 cm/yr with the onset of logging and land clearance about 1880 A.D.


2016 ◽  
Vol 46 (8) ◽  
pp. 1019-1025 ◽  
Author(s):  
Carolyn A. Copenheaver ◽  
Tara L. Keyser

We hypothesized that tree form, recorded in historical public land surveys, would provide a valuable proxy record of regeneration patterns during early-European settlement of North America’s eastern deciduous forest. To test this hypothesis, we tallied stem form from witness trees used in land survey records in the southern Appalachian Mountains from 13 counties spanning four physiographic provinces: Piedmont, Blue Ridge, Ridge and Valley, and Cumberland Plateau. A total of 3% of witness trees used in the land surveys were of sprout origin. American basswood (Tilia americana L.) exhibited the highest proportion of sprout-origin trees at 12%. Other overstory species with a high proportion of sprout-origin trees were hickory (Carya sp.), red maple (Acer rubrum L.), and sycamore (Platanus occidentalis L.), all with 6% of stems being from sprout origin. Blue Ridge had significantly more sprout-origin trees compared with the other three physiographic provinces. Forests in the southern Appalachian Mountains during the pre-European settlement period had a suite of disturbances that controlled their growth and regeneration; however, most of these disturbances did not result in large-scale tree mortality, and therefore, sprouts were not an important source of regeneration.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 71 ◽  
Author(s):  
Douglas K. Miller ◽  
Chelcy Ford Miniat ◽  
Richard M. Wooten ◽  
Ana P. Barros

Previous examination of rain gauge observations over a five-year period at high elevations within a river basin of the southern Appalachian Mountains showed that half of the extreme (upper 2.5%) rainfall events were associated with an atmospheric river (AR). Of these extreme events having an AR association, over 73% were linked to a societal hazard at downstream locations in eastern Tennessee and western North Carolina. Our analysis in this study was expanded to investigate AR effects in the southern Appalachian Mountains on two river basins, located 60 km apart, and examine their influence on extreme rainfall, periods of elevated precipitation and landslide events over two time periods, the ‘recent’ and ‘distant’ past. Results showed that slightly more than half of the extreme rainfall events were directly attributable to an AR in both river basins. However, there was disagreement on individual ARs influencing extreme rainfall events in each basin, seemingly a reflection of its proximity to the Blue Ridge Escarpment and the localized terrain lining the river basin boundary. Days having at least one landslide occurring in western North Carolina were found to be correlated with long periods of elevated precipitation, which often also corresponded to the influence of ARs and extreme rainfall events.


Sign in / Sign up

Export Citation Format

Share Document