organic sediment
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 19)

H-INDEX

23
(FIVE YEARS 0)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Ehab Meselhe ◽  
Ahmed M. Khalifa ◽  
Kelin Hu ◽  
James Lewis ◽  
Ahmad A. Tavakoly

A Delft3D morphodynamic model for Barataria Bay, Louisiana, USA is used to quantify a plausible range of land change in response to a proposed sediment diversion under a range of environmental drivers. To examine the influence of environmental drivers, such as Mississippi River water hydrographs, mineral and organic sediment loading, sea level rise rates, subsidence, and a projected implementation (or operation) date, 240 multi-decadal (2020–2100) numerical experiments were used. The diversion was assumed to begin operation in 2025, 2030, or 2035. The experiments revealed persistent benefits of the sediment diversion through 2100. Start data of 2025 result in a median net positive land change of 32 km2 by 2100; whereas the 90th, and 10th percentiles are 69 and 10 km2. A delay in the operation date of the diversion to 2030 or 2035 would reduce the net positive land change by approximately 15–20% and 20–30%, respectively.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1189
Author(s):  
Adoum Mahamat Ahmat ◽  
Walid Maherzi ◽  
Claude Le Milbeau ◽  
Mahfoud Benzerzour ◽  
Nor-Edine Abriak

Dredging sediments can be implemented as primary resources in several civil engineering applications, on the condition that the release of anthropogenic compounds meets environmental requirements. The remediation of sedimentary wastes constitutes therefore, a key step before valorization consideration in circular economy schemes. This study focused on Zn removal from clayey river sediments dredged in northern France (Lille, Saint-Omer and Aire-Sur-La Lys) using a Thermo-Evolved Red Mud (TERM) and a Slag Based Hydraulic Binder (SBHB). The first step consisted in investigating Zn-trapping mechanisms prior to TERM and SBHB application as Zn-stabilizers. Results underlined poorer metal retention within the most organic sediment (high fatty acids and polycyclic aromatic molecules concentrations), emphasizing the minor role of the organic fraction typology during Zn-trapping. The pollutant displayed its best binding yields within the sediment with the highest interstitial pH and specific areas, which stressed out the preponderant influence of alkalinization ability and particles size distribution. In a second step, the spiked sediments were treated with TERM and SBHB, which resulted in a substantial lowering of Zn release at 12% of stabilizer/sediment ratio. Even though the organic content role was not preeminent during the pollutant trapping, it appeared here influential as delays in removal efficiencies were observed for the most endowed sediment. Two preferential geochemical pathways were adopted during the remediation operations with significant promotive roles of basic background pH. Indeed, Zn removal with TERM consisted mainly in sorptive mechanisms involving exchanges with Ca and Mg ions, whereas binding onto SBHB was principally achieved through precipitation phenomena.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1397
Author(s):  
Rūta Barisevičiūtė ◽  
Evaldas Maceika ◽  
Laurynas Juodis ◽  
Algirdas Pabedinskas ◽  
Justina Šapolaitė ◽  
...  

The Ignalina Nuclear Power Plant (INPP) in Lithuania is a rare case when lake water is used instead of river or sea water for cooling. Lake Drūkšiai with water residence time of 3–4 year and undisturbed sediment layers is a unique system to assess the impact of a nuclear facility on the aquatic ecosystem with a sufficiently high temporal resolution. We constructed a model of radiocarbon cycling processes in lake ecosystem which evaluates the 14C specific activity vertical distribution in two organic sediment fractions: alkali-soluble and alkali-insoluble. Model calculations proved that during the first 15 years of operation since 1983, 14C annual aqueous releases from the INPP were in water dissolved inorganic carbon form and varied in the range of 2.4 ÷ 3.7 × 108 Bq/year. The results of the modeling of hypothetic scenarios also showed that there was the only one episode of elevated releases from the INPP in 2000–2001, which changed the interaction between the two organic sediment fractions for the period of 2000–2006. It was caused most probably by released chemicals from INPP but not by 14C contamination. Interaction processes between both sediment fractions recovered to its original state after 2006, indicating that the released additional chemical compounds lake ecosystem have been cleaned-up.


2021 ◽  
Author(s):  
Neil Saintilan ◽  
Katya Kovalenko ◽  
Glenn Guntenspergen ◽  
Kerrylee Rogers ◽  
James Lynch ◽  
...  

Abstract The vulnerability of the world’s tidal marshes to sea-level rise threatens their substantial contribution to fisheries, coastal protection, biodiversity conservation and carbon sequestration. Feedbacks between relative sea-level rise (RSLR) and the rate of mineral and organic sediment accumulation in tidal wetlands, and hence elevation gain, have been proposed to ameliorate this risk. Here we report on changes in tidal marsh elevation and shoreline position in relation to our network of 387 fixed benchmarks in tidal marshes on four continents measured for an average of 10 years. During this period RSLR at these marshes reached on average 6.6 mm yr-1, compared to 0.34 mm yr-1 over the past millenia. While the rate of sediment accretion corresponded to RSLR, the loss of elevation to shallow subsidence increased in proportion to the accretion rate. This caused a deficit between elevation gain and RSLR which increased consistently with the rate of RSLR regardless of position within the tidal frame, suggesting that long-term in situ tidal marsh survival is unlikely. While higher tidal range (>3m) conferred a greater stability in measures of shoreline change and vegetation cover, other regions showed a tendency towards instability and retreat.


2021 ◽  
Author(s):  
Jose Silvestre ◽  
Kelly Sanks ◽  
Sam Zapp ◽  
Dutt Ripul ◽  
John Shaw ◽  
...  

<p>Many deltas contain extensive marshes, typically defined as laterally extensive, low energy settings tied to a narrow elevation window around sea level. Biological activity in marshes results in in-situ organic sediment accumulation that has the potential to be stored in the sedimentary record. However, it is unclear how marshes interact with channels that transport the clastic sediment and typically control autogenic stratigraphic architecture. We present results from a physical experiment designed to explore the coupled evolution of marshes and deltas over geologic timescales. In the experiment, deltaic channels self-organized due to constant input rates of water and clastic sediment that experience constant long-term accommodation production through sea-level rise. A low bulk density kaolinite clay was deposited on the delta-top following rules developed by the ecology community for in-situ organic production. The kaolinite clay serves as a proxy for the in-situ organic sediments in overbank regions. As such, the autogenic processes of the clastic transport system, which influence elevation relative to sea-level, also exert a control on the scales of preserved organic-rich strata. We quantify the fraction of the organic sediment proxy in the fluvio-deltaic deposit to define a transfer function between the accumulation of organic sediment and its preservation beneath the morphodynamically active layer. We also use synthetic stratigraphy and images of the preserved strata to characterize the spatial arrangements of organic strata, and the influence of marshes on the resulting arrangement of channel bodies. Initial findings suggest that the thickest seams are located near the mean shoreline but extend significant distances from this location due to autogenic shoreline transgressions and regressions. Quantifying these trends will inform our understanding of how in-situ organic sediment accumulation influences clastic transport systems and the structure of deltaic stratigraphy.</p>


The Holocene ◽  
2021 ◽  
pp. 095968362199464
Author(s):  
Karsten Schittek ◽  
Lelaina Teichert ◽  
Katrin Geiger ◽  
Klaus-Holger Knorr ◽  
Simone Schneider

A Late Pleistocene/Holocene paleoenvironmental record was obtained from the Rouer peatland (5°54′E, 49°45′N; 270 m a.s.l.), located in the Gutland area of southern Luxembourg. A total of six sediment samples were AMS radiocarbon-dated to obtain an age-depth model. XRF analyses and analyses of geochemical proxies of organic matter (TOC, TN, δ13C, δ15N) were conducted to identify major paleoenvironmental changes in the record. Pollen analysis reveals insights into the vegetation history throughout the last 14,000 cal. yr BP. The record offers unique insights into the evolution of local organic sediment/peat accumulation, as well as into the environmental history of the Gutland region and beyond. The accumulation of organic sediment and peat started at about 13,800 cal. yr BP before present. Until about 6000 cal. yr BP, periods of apparently stable climatic conditions had been interrupted repeatedly by pronounced episodes with increased input of minerogenic matter into the peat matrix (12,700–11,800 cal. yr BP; 11,500–11,300 cal. yr BP; 11,100–10,800 cal. yr BP; 9300 cal. yr BP; 8200 cal. yr BP), indicated by sudden increases of Ti/coh values. After 6000 cal. yr BP, environmental conditions stabilized. Between 4200 and 2800 cal. yr BP, during the Bronze Age, changes in the pollen spectrum indicate an increasing clearance of woodlands. Since the Roman period, an ongoing intensification of grassland farming and agriculture is evidenced. Lowest tree species abundances are witnessed during the Middle Ages. The Modern Era is characterized by enhanced sediment input due to soil erosion. In short, this record complements the Late Pleistocene/Holocene climatic history of the Gutland area and demonstrates that fen peat deposits can be valuable high-resolution paleoclimate archives.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Thomas M. Missimer ◽  
Serge Thomas ◽  
Barry H. Rosen

Lake Okeechobee is one of the largest freshwater lakes in the United States. As a eutrophic lake, it has frequent algal blooms composed predominantly of the cyanobacterium genus Microcystis. Many of the algal blooms are associated with the resuspension of a thixotropic benthic mud containing legacy nutrients. Since Lake Okeechobee has an area of 1732 km2 (40–50 km radius) and a mean depth of only 2.7 m, there is sufficient fetch and shallow water depth to allow frequent wind, wave, and current generated events, which cause sediment resuspension. Three types of mud exist in the lake including an immobile dark-colored, consolidated mud, a brownish-colored mud, which is poorly consolidated and mobile, and a dark-colored thixotropic, highly mobile mud that is a mixture of organic matter and clay-sized minerals. Altogether, these muds contain an estimated 4.6 × 106 kg of total phosphorus and commensurate high amounts of labile nitrogen. The thixotropic mud covers most of the lakebed and contains the suitable nutrient ratios to trigger algal blooms. A bioassay analysis of the thixotropic mud compared to the consolidated mud showed that it produced up to 50% more nutrient mass compared to the consolidated mud. The thixotropic mud does not consolidate, thus remains mobile. The mobility is maintained by the dynamics of the algal blooms and bacterial decay of extracellular secretions (transparent exopolymer particles) that bind sediment, transfer it to the bottom, and undergo bacterial digestion causing gas emissions, thus maintaining the organic/sediment matrix in suspension. Despite major efforts to control external nutrient loading into the lake, the high frequency of algal blooms will continue until the muds bearing legacy nutrients are removed from the lake.


Sign in / Sign up

Export Citation Format

Share Document