Academy panel raises radiation risk estimates

Science ◽  
1990 ◽  
Vol 247 (4947) ◽  
pp. 1166-1167
Author(s):  
H. Rossi
2020 ◽  
Vol 2 (3) ◽  
pp. 188-200 ◽  
Author(s):  
R Edward Hendrick

Abstract This article describes radiation doses and cancer risks of digital breast imaging technologies used for breast cancer detection. These include digital mammography (DM), digital breast tomosynthesis (DBT), and newer technologies such as contrast-enhanced digital or spectral mammography (CEM), whole-breast computed tomography, breast-specific gamma imaging (BSGI), molecular breast imaging (MBI), and positron emission mammography (PEM). This article describes the basis for radiation risk estimates, compares radiation doses and risks, and provides benefit-to-radiation-risk ratios for different breast imaging modalities that use ionizing radiation. Current x-ray–based screening modalities such as DM and DBT have small to negligible risks of causing radiation-induced cancers in women of normal screening age. Possible new screening modalities such as CEM have similar small cancer risks. Potential screening modalities that involve radionuclide injection such as BSGI, MBI, and PEM have significantly higher cancer risks unless efficient detection systems and reduced administered doses are used. Benefit-to-radiation-risk estimates are highly favorable for screening with DM and other modalities having comparable (or higher) cancer detection rates and comparably low radiation doses.


2020 ◽  
Vol 65 (4) ◽  
pp. 74-86
Author(s):  
I. Kuznetsova ◽  
M. Gillies

Purpose: The estimation of the radiation risk of leukemia incidence and mortality for occupational exposure. Material and methods: The study was conducted in the pooled cohort comprised 45,817 workers from the two enterprises; 23,443 radiation workers first employed in 1947–2002 from the Sellafield plant (Great Britain) and 22,774 workers from the Mayak PA (Russia) first employed at the main plants in 1948–1982. The period of follow-up was terminated at the end of 2008 for Mayak workers who were Ozyorsk city residents, and at the end of 2005 for Sellafield workers and Mayak workers who had migrated from Ozyorsk. Results: Comparable radiation risk estimates of leukemia incidence and mortality were found among Mayak PA and Sellafield workers as for the whole dose range and separate dose intervals. Averaged by attained age estimate of excess relative risk per 1 Gy of external gamma-dose was 3.0 (95 % CI: 1.3–6.3) under the assumption of the linear dose–effect model. The quadratic model with attained age modification showed the best quality of fit. Risk estimates were statistically significant in the dose range 0.15–1.5 Gy. There was no evidence of any relationship between leukemia risks and accumulated red bone marrow dose of internal alpha-exposure due to incorporated Pu-239. Conclusion: Preliminary analysis of the pooled cohort data has demonstrated the feasibility and efficiency of a research project looking at leukemia risks in a joint cohort of Mayak and Sellafield workers. The current study provides further evidence about the already well established link between external-gamma exposure and leukemia risk. However, it fails to provide any firm further evidence about the absence or presence of relationship between plutonium exposure and leukemia risk.


2001 ◽  
Vol 80 (4) ◽  
pp. 349-361 ◽  
Author(s):  
Elisabeth Cardis ◽  
David Richardson ◽  
Ausrele Kesminiene

2010 ◽  
Vol 49 (3) ◽  
pp. 389-396 ◽  
Author(s):  
Daniela Trani ◽  
Kamal Datta ◽  
Kathryn Doiron ◽  
Bhaskar Kallakury ◽  
Albert J. Fornace

2017 ◽  
Vol 62 (2) ◽  
pp. 13-27
Author(s):  
Julio Abel ◽  
Julio Abel

Purpose: The aim of the paper is to review the genesis and evolution of the concept termed dose and dose rate effectiveness factor or DDREF, to expose critiques on the concept and to suggest some curse of action on its use. Material and methods: Mainly using the UNSCEAR reporting and ICRP recommendations as the main reference material, the paper describes the evolution (since the 70’s) of the conundrum of inferring radiation risk at low dose and dose-rate. People are usually exposed to radiation at much lower doses and dose rates than those for which quantitative evaluations of incidence of radiation effects are available – a situation that tempted experts to search for a factor relating the epidemiological attribution of effects at high doses and dose-rates with the subjective inference of risk at low doses and dose-rates. The formal introduction and mathematical formulation of the concept by UNSCEAR and ICRP (in the 90’s), is recalled. It is then underlined that the latest UNSCEAR radiation risk estimates did not use a DDREF concept, making it de facto unneeded for purposes of radiation risk attribution. The paper also summarizes the continuous use of the concept for radiation protection purposes and related concerns as well as some current public misunderstandings and apprehension on the DDREF (particularly the aftermath of the Fukushima Dai’ichi NPP accident). It finally discusses epistemological weaknesses of the concept itself. Results: It seems that the DDREF has become superseded by scientific developments and its use has turned out to be unneeded for the purposes of radiation risk estimates. The concept also appears to be arguable for radiation protection purposes, visibly controversial and epistemologically questionable Conclusions: It is suggested that: (i) the use of the DDREF can be definitely abandoned for radiation risk estimates; (ii) while recognizing that radiation protection has different purposes than radiation risk estimation, the discontinuation of using a DDREF for radiation protection might also be considered; (iii) for radiation exposure situations for which there are available epidemiological information that can be scientifically tested (namely which is confirmable and verifiable and therefore falsifiable), radiation risks should continue to be attributed in terms of frequentistic probabilities; and, (iv) for radiation exposure situations for which direct scientific evidence of effects is unavailable or unfeasible to obtain, radiation risks may need to be inferred on the basis of indirect evidence, scientific reasoning and professional judgment aimed at estimating their plausibility in terms of subjective probabilities.


Sign in / Sign up

Export Citation Format

Share Document