space radiation
Recently Published Documents


TOTAL DOCUMENTS

1122
(FIVE YEARS 205)

H-INDEX

39
(FIVE YEARS 6)

2021 ◽  
Vol 22 (24) ◽  
pp. 13305
Author(s):  
Maren K. Schroeder ◽  
Bin Liu ◽  
Robert G. Hinshaw ◽  
Mi-Ae Park ◽  
Shuyan Wang ◽  
...  

Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer’s disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer’s-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aβ) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aβ and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.


2021 ◽  
Author(s):  
Sergey Mescheryakov ◽  
Artem Groshev ◽  
Tatyana Skvortsova

The paper considers the modeling of radiation effects in design automation tools. Special at-tention is paid to the development of complex functional blocks and microelectronic products based on them, which require ensuring technological independence when creating modern control sys-tems, data processing and communication.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7753
Author(s):  
Heng An ◽  
Detian Li ◽  
Shengsheng Yang ◽  
Xuan Wen ◽  
Chenguang Zhang ◽  
...  

In order to verify the performance of a graphene-based space radiation detection sensor, the radiation detection principle based on two-dimensional graphene material was analyzed according to the band structure and electric field effect of graphene. The method of space radiation detection based on graphene was studied and then a new type of space radiation sensor samples with small volume, high resolution, and radiation-resistance was formed. Using protons and electrons, the electrical performance of GFET radiation sensor was verified. The designed graphene space radiation detection sensor is expected to be applied in the radiation environment monitoring of the space station and the moon, and can also achieve technological breakthroughs in pulsar navigation and other fields.


2021 ◽  
Vol 2 (6) ◽  
pp. 10-11
Author(s):  
Jyh-Woei Lin

Solar storm was an effect when Sun was active. Solar flares flame released a large amount of energy and caused a large-scale explosion. A large amount of coronal matter was ejected into space by plasma composed of electrons and protons. Their shock waves or magnetic clouds and the earth Magnetic storms generated by the interaction of magnetic fields caused disturbances and squeezing of the earth’s magnetosphere. A solar flare was a phenomenon of solar storm. It had huge eruptions of electromagnetic radiation. The sudden electromagnetic energy traveled with the speed of light. Large solar flare might affect the effects of reliability of electronic components in satellites and could cause economic losses by soft error and could affect human health through the space radiation, especially causing cancer.


Sign in / Sign up

Export Citation Format

Share Document