intestinal tumor
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 32)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Vol 24 ◽  
pp. 101093
Author(s):  
Sathya Kaliannan ◽  
Sameera Ganti ◽  
Boon Yuru ◽  
Eunizar Omar
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Haruna Takeda

Systematic approaches for functionally validating cancer genes are needed since numerous genes mutated in cancer tissues have been identified from cancer genome sequencing. The mouse organoid culture system has been extensively used in the field of cancer research since mouse organoids can faithfully recapitulate the physiological behavior of the cells. Taking advantage of this, we recently described a platform for functionally validating colorectal cancer (CRC) driver genes that utilized CRISPR-Cas9 in mouse intestinal tumor organoids. In this review, we will describe how mouse organoids have been applied to CRC research and focus on how CRC genes can be validated using mouse organoids.


Author(s):  
Markus Winter ◽  
Matjaž Rokavec ◽  
Heiko Hermeking

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 241
Author(s):  
Zhiyuan V. Zou ◽  
Kristell Le Gal ◽  
Ahmed E. El Zowalaty ◽  
Lara E. Pehlivanoglu ◽  
Viktor Garellick ◽  
...  

Dietary antioxidants and supplements are widely used to protect against cancer, even though it is now clear that antioxidants can promote tumor progression by helping cancer cells to overcome barriers of oxidative stress. Although recent studies have, in great detail, explored the role of antioxidants in lung and skin tumors driven by RAS and RAF mutations, little is known about the impact of antioxidant supplementation on other cancers, including Wnt-driven tumors originating from the gut. Here, we show that supplementation with the antioxidants N-acetylcysteine (NAC) and vitamin E promotes intestinal tumor progression in the ApcMin mouse model for familial adenomatous polyposis, a hereditary form of colorectal cancer, driven by Wnt signaling. Both antioxidants increased tumor size in early neoplasias and tumor grades in more advanced lesions without any impact on tumor initiation. Importantly, NAC treatment accelerated tumor progression at plasma concentrations comparable to those obtained in human subjects after prescription doses of the drug. These results demonstrate that antioxidants play an important role in the progression of intestinal tumors, which may have implications for patients with or predisposed to colorectal cancer.


2021 ◽  
Vol 35 ◽  
pp. 205873842110383
Author(s):  
Kai Yang ◽  
Jie Zhu ◽  
Huan-hua Luo ◽  
Shu-wen Yu ◽  
Lu Wang

Introduction Pro-protein convertase subtilisin/kexin type 9 (PCSK9) regulates lipoprotein homeostasis in humans. Evolocumab is a selective PCSK9 inhibitor that can reduce low-density lipoprotein cholesterol (LDLC) level and decrease hypercholesterolemia. The current study aimed to explore whether PCSK9 increases the risk of colorectal cancer. Methods First, we utilized the classic intestinal tumor ApcMin/+ mouse model and PCSK9 knock-in (KI) mice to establish ApcMin/+PCSK9(KI) mice. Then, we investigated the effect of PCSK9 overexpression in ApcMin/+PCSK9(KI) mice and PCSK9 inhibition using evolocumab on the progression of intestinal tumors in vivo by hematoxylin and eosin (HE) staining, Western blot, and immunohistochemistry (IHC) assay. Results ApcMin/+PCSK9(KI) mice had higher numbers and larger sizes of adenomas, with 83.3% of these mice developing adenocarcinoma (vs. 16.7% of ApcMin/+ mice). However, treatment with evolocumab reduced the number and size of adenomas and prevented the development of adenocarcinomas in ApcMin/+ mice. PCSK9 overexpression reduced tumor cell apoptosis, the Bax/bcl-2 ratio, and the levels of cytokine signaling 3 protein (SOCS3) suppressors, but activated Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling in intestinal tumors. In contrast, evolocumab treatment had the opposite effect on ApcMin/+mice. Conclusion PCSK9 might act as an oncogene or have an oncogenic role in the development and progression of colorectal cancer in vivo via activation of JAK2/STAT3/SOCS3 signaling.


Oncogene ◽  
2020 ◽  
Author(s):  
Rie Kajino-Sakamoto ◽  
Teruaki Fujishita ◽  
Makoto Mark Taketo ◽  
Masahiro Aoki

Sign in / Sign up

Export Citation Format

Share Document