scholarly journals Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue

Science ◽  
1998 ◽  
Vol 282 (5397) ◽  
pp. 2226-2230 ◽  
Author(s):  
L. Ga lweiler ◽  
C. Guan ◽  
A. Mu ller ◽  
E. Wisman ◽  
K. Mendgen ◽  
...  
2019 ◽  
Vol 61 (2) ◽  
pp. 353-369 ◽  
Author(s):  
Rumi Amano ◽  
Hokuto Nakayama ◽  
Risa Momoi ◽  
Emi Omata ◽  
Shizuka Gunji ◽  
...  

Abstract Some plant species have a striking capacity for regeneration in nature, including regeneration of the entire individual from explants. However, due to the lack of suitable experimental models, the regulatory mechanisms of spontaneous whole plant regeneration are mostly unknown. In this study, we established a novel model system to study these mechanisms using an amphibious plant within Brassicaceae, Rorippa aquatica, which naturally undergoes vegetative propagation via regeneration from leaf fragments. Morphological and anatomical observation showed that both de novo root and shoot organogenesis occurred from the proximal side of the cut edge transversely with leaf vascular tissue. Time-series RNA-seq analysis revealed that auxin and cytokinin responses were activated after leaf amputation and that regeneration-related genes were upregulated mainly on the proximal side of the leaf explants. Accordingly, we found that both auxin and cytokinin accumulated on the proximal side. Application of a polar auxin transport inhibitor retarded root and shoot regeneration, suggesting that the enhancement of auxin responses caused by polar auxin transport enhanced de novo organogenesis at the proximal wound site. Exogenous phytohormone and inhibitor applications further demonstrated that, in R. aquatica, both auxin and gibberellin are required for root regeneration, whereas cytokinin is important for shoot regeneration. Our results provide a molecular basis for vegetative propagation via de novo organogenesis.


Development ◽  
2001 ◽  
Vol 128 (20) ◽  
pp. 4057-4067 ◽  
Author(s):  
René Benjamins ◽  
Ab Quint ◽  
Dolf Weijers ◽  
Paul Hooykaas ◽  
Remko Offringa

Arabidopsis pinoid mutants show a strong phenotypic resemblance to the pin-formed mutant that is disrupted in polar auxin transport. The PINOID gene was recently cloned and found to encode a protein-serine/threonine kinase. Here we show that the PINOID gene is inducible by auxin and that the protein kinase is present in the primordia of cotyledons, leaves and floral organs and in vascular tissue in developing organs or proximal to meristems. Overexpression of PINOID under the control of the constitutive CaMV 35S promoter (35S::PID) resulted in phenotypes also observed in mutants with altered sensitivity to or transport of auxin. A remarkable characteristic of high expressing 35S::PID seedlings was a frequent collapse of the primary root meristem. This event triggered lateral root formation, a process that was initially inhibited in these seedlings. Both meristem organisation and growth of the primary root were rescued when seedlings were grown in the presence of polar auxin transport inhibitors, such as naphthylphtalamic acid (NPA). Moreover, ectopic expression of PINOID cDNA under control of the epidermis-specific LTP1 promoter provided further evidence for the NPA-sensitive action of PINOID. The results presented here indicate that PINOID functions as a positive regulator of polar auxin transport. We propose that PINOID is involved in the fine-tuning of polar auxin transport during organ formation in response to local auxin concentrations.


2021 ◽  
Vol 22 (1) ◽  
pp. 437
Author(s):  
Meng Wang ◽  
Panpan Li ◽  
Yao Ma ◽  
Xiang Nie ◽  
Markus Grebe ◽  
...  

Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (β-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation.


1998 ◽  
Vol 116 (4) ◽  
pp. 1505-1513 ◽  
Author(s):  
James R. Shinkle ◽  
Rajan Kadakia ◽  
Alan M. Jones

2017 ◽  
Vol 114 (36) ◽  
pp. E7641-E7649 ◽  
Author(s):  
Riccardo Di Mambro ◽  
Micol De Ruvo ◽  
Elena Pacifici ◽  
Elena Salvi ◽  
Rosangela Sozzani ◽  
...  

In multicellular organisms, a stringent control of the transition between cell division and differentiation is crucial for correct tissue and organ development. In the Arabidopsis root, the boundary between dividing and differentiating cells is positioned by the antagonistic interaction of the hormones auxin and cytokinin. Cytokinin affects polar auxin transport, but how this impacts the positional information required to establish this tissue boundary, is still unknown. By combining computational modeling with molecular genetics, we show that boundary formation is dependent on cytokinin’s control on auxin polar transport and degradation. The regulation of both processes shapes the auxin profile in a well-defined auxin minimum. This auxin minimum positions the boundary between dividing and differentiating cells, acting as a trigger for this developmental transition, thus controlling meristem size.


1997 ◽  
Vol 9 (5) ◽  
pp. 745 ◽  
Author(s):  
Max Ruegger ◽  
Elizabeth Dewey ◽  
Lawrence Hobbie ◽  
Dana Brown ◽  
Paul Bernasconi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document