auxin polar transport
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 8)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 22 (24) ◽  
pp. 13664
Author(s):  
Dan Li ◽  
Mingyuan Zhao ◽  
Jinshan Jia ◽  
Xiaoyan Yu ◽  
Lanyong Zhao ◽  
...  

Branch angle is a key shoot architecture trait that strongly influences the ornamental and economic value of garden plants. However, the mechanism underlying the control of branch angle, an important aspect of tree architecture, is far from clear in roses. In the present study, we isolated the RrLAZY1 gene from the stems of Rosa rugosa ‘Zilong wochi’. Sequence analysis showed that the encoded RrLAZY1 protein contained a conserved GΦL (A/T) IGT domain, which belongs to the IGT family. Quantitative real-time PCR (qRT-PCR) analyses revealed that RrLAZY1 was expressed in all tissues and that expression was highest in the stem. The RrLAZY1 protein was localized in the plasma membrane. Based on a yeast two-hybrid assay and bimolecular fluorescence complementation experiments, the RrLAZY1 protein was found to interact with auxin-related proteins RrIAA16. The over-expression of the RrLAZY1 gene displayed a smaller branch angle in transgenic Arabidopsis inflorescence and resulted in changes in the expression level of genes related to auxin polar transport and signal transduction pathways. This study represents the first systematic analysis of the LAZY1 gene family in R. rugosa. The results of this study will provide a theoretical basis for the improvement of rose plant types and molecular breeding and provide valuable information for studying the regulation mechanism of branch angle in other woody plants.


Author(s):  
F. Javier Medina ◽  
Aránzazu Manzano ◽  
Alicia Villacampa ◽  
Malgorzata Ciska ◽  
Raúl Herranz

Plants are a necessary component of any system of bioregenerative life-support for human space exploration. For this purpose, plants must be capable of surviving and adapting to gravity levels different from the Earth gravity, namely microgravity, as it exists on board of spacecrafts orbiting the Earth, and partial-g, as it exists on the surface of the Moon or Mars. Gravity is a fundamental environmental factor for driving plant growth and development through gravitropism. Exposure to real or simulated microgravity produces a stress response in plants, which show cellular alterations and gene expression reprogramming. Partial-g studies have been performed in the ISS using centrifuges and in ground based facilities, by implementing adaptations in them. Seedlings and cell cultures were used in these studies. The Mars gravity level is capable of stimulating the gravitropic response of the roots and preserving the auxin polar transport. Furthermore, whereas Moon gravity produces alterations comparable, or even stronger than microgravity, the intensity of the alterations found at Mars gravity was milder. An adaptive response has been found in these experiments, showing upregulation of WRKY transcription factors involved in acclimation. This knowledge must be improved by incorporating plants to the coming projects of Moon exploration.


Author(s):  
Han-Qing Wang ◽  
Wei Xuan ◽  
Xin-Yuan Huang ◽  
Chuanzao Mao ◽  
Fang-Jie Zhao

Abstract Cadmium (Cd) strongly inhibits root growth, especially the formation of lateral roots (LRs). The mechanism of Cd inhibition on LR formation in rice (Oryza sativa) remains unclear. In this study, we found that LR emergence in rice was inhibited significantly by 1 µM Cd and almost completely arrested by 5 µM Cd. Cd suppressed both the formation and subsequent development of the lateral root primordium (LRP). By using transgenic rice expressing the auxin response reporters DR5::GUS and DR5rev::VENUS, we found that Cd markedly reduced the auxin levels in the stele and LRP. Cd rapidly downregulated the expression of the auxin efflux transporter genes OsPIN1b, OsPIN1c and OsPIN9 in the stele and LRP. The emergence of LRs in a rice cultivar with a null allele of OsHMA3 (Heavy Metal ATPase 3) was more sensitive to Cd than cultivars with functional alleles. Overexpression of functional OsHMA3 in rice greatly alleviated the inhibitory effect of Cd, but the protective effect of OsHMA3 was abolished by the auxin polar transport inhibitor 1-N-naphthylphthalamic acid. The results suggest that Cd inhibits LR development in rice by disrupting OsPIN-mediated auxin distribution to LRP and OsHMA3 protects against Cd toxicity by sequestering Cd into the vacuoles.


Author(s):  
Félix P Hartmann ◽  
Cyrille B K Rathgeber ◽  
Éric Badel ◽  
Meriem Fournier ◽  
Bruno Moulia

Abstract In conifers, xylogenesis produces during a growing season a very characteristic tree-ring structure: large thin-walled earlywood cells followed by narrow thick-walled latewood cells. Although many factors influence the dynamics of differentiation and the final dimensions of xylem cells, the associated patterns of variation remain very stable from one year to the next. While radial growth is characterised by an S-shaped curve, the widths of xylem differentiation zones exhibit characteristic skewed bell-shaped curves. These elements suggest a strong internal control of xylogenesis. It has long been hypothesised that much of this regulation relies on a morphogenetic gradient of auxin. However, recent modelling works have shown that while this hypothesis could account for the dynamics of stem radial growth and the zonation of the developing xylem, it failed to reproduce the characteristic tree-ring structure. Here we investigated the hypothesis of a regulation by a crosstalk between auxin and a second biochemical signal, using computational morphodynamics. We found that, in conifers, such a crosstalk is sufficient to simulate the characteristic features of wood formation dynamics, as well as the resulting tree-ring structure. In this model, auxin controls cell enlargement rates while another signal (e.g., cytokinin, TDIF) drives cell division and auxin polar transport.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Hu Wang ◽  
Huanhuan Niu ◽  
Chuang Li ◽  
Guoyan Shen ◽  
Xiaofeng Liu ◽  
...  

Abstract In plants, WUSCHEL-related homeobox1 (WOX1) homologs promote lamina mediolateral outgrowth. However, the downstream components linking WOX1 and lamina development remain unclear. In this study, we revealed the roles of WOX1 in palmate leaf expansion in cucumber (Cucumis sativus). A cucumber mango fruit (mf) mutant, resulting from truncation of a WOX1-type protein (CsWOX1), displayed abnormal lamina growth and defects in the development of secondary and smaller veins. CsWOX1 was expressed in the middle mesophyll and leaf margins and rescued defects of the Arabidopsis wox1 prs double mutant. Transcriptomic analysis revealed that genes involved in auxin polar transport and auxin response were highly associated with leaf development. Analysis of the cucumber mf rl (round leaf) double mutant revealed that CsWOX1 functioned in vein development via PINOID (CsPID1)-controlled auxin transport. Overexpression of CsWOX1 in cucumber (CsWOX1-OE) affected vein patterning and produced ‘butterfly-shaped’ leaves. CsWOX1 physically interacted with CsTCP4a, which may account for the abnormal lamina development in the mf mutant line and the smaller leaves in the CsWOX1-OE plants. Our findings demonstrated that CsWOX1 regulates cucumber leaf vein development by modulating auxin polar transport; moreover, CsWOX1 regulates leaf size by controlling CIN-TCP genes.


2020 ◽  
Author(s):  
Duo Lv ◽  
Yao Yu ◽  
Liang-Rong Xiong ◽  
Gang Wang ◽  
Jin-An Pang ◽  
...  

Abstract Background: The trichomes of cucumber fruits are also called spines. Cucumber has important commercial value, and its fruit spines represent a classical tissue with which to study the cell division and differentiation mode of multicellular trichomes. Although there have been many studies on the development of unicellular trichomes in model plants, the molecular mechanism of multicellular trichome formation remains elusive. In this study, we used a pair of cucumber materials defined as having hard (Ts, wild type) or tender (ts, mutant) spines in a previous study. The whole developmental process of fruit spines was continuously observed by microscopy and SEM. In an attempt to define the developmental stages of fruit spines, transcriptome profiles at different stages were determined to explore the molecular mechanisms underlying the process of spine development. Results: According to significant phenotypic differences, the developmental process of fruit spines was clearly defined as involving four stages. Comparison of transcriptome profiles showed that 803 and 722 genes were upregulated in the stalk (stage II and stage III) and base (stage IV) developmental stages of fruit spines, respectively. Functional analysis of differentially expressed genes (DEGs) showed that for all developmental stages of fruit spines, lipid metabolism, amino acid metabolism, and signal transduction were the most noticeable pathways. However, during the development of the stalk, genes related to auxin polar transport and HD-ZIP transcription factors were significantly upregulated. bHLH transcription factors and cytoskeleton-related genes were significantly upregulated during the development of the base. In addition, stage III was the key point for differentiating between the wild type and mutant. We detected 628 DEGs between the wild type and mutant at this stage. These DEGs are mainly involved in calcium signaling of the cytoskeleton and auxin polar transport, indicating that the main reason for the disorder of the fruit spine developmental pattern in the mutant was a change in cell polarity caused by blocked intercellular signal transmission.Conclusions: Our study defines in great detail the developmental stages of cucumber fruit spines. At the same time, transcriptome profiles are used to present the gene regulatory networks at different developmental stages of cucumber fruit spines. In addition, we analyzed transcriptomic data of a wild type and mutant to elucidate the biological pathways involving C-type lectin receptor-like kinase that regulate the development of fruit spines.


2020 ◽  
Author(s):  
Félix P. Hartmann ◽  
Cyrille B. K. Rathgeber ◽  
Eric Badel ◽  
Meriem Fournier ◽  
Bruno Moulia

AbstractIn conifers, xylogenesis produces during a growing season a very characteristic tree-ring structure: large thin-walled earlywood cells followed by narrow thick-walled latewood cells. Although many factors influence the dynamics of differentiation and the final dimensions of xylem cells, the associated patterns of variation remain very stable from one year to the next. While radial growth is characterised by an S-shaped curve, the widths of xylem differentiation zones exhibit characteristic skewed bell-shaped curves. These elements suggest a strong internal control of xylogenesis. It has long been hypothesised that much of this regulation relies on a morphogenetic gradient of auxin. However, recent modelling works have shown that while this hypothesis could account for the dynamics of stem radial growth and the zonation of the developing xylem, it failed to reproduce the characteristic tree-ring structure. Here we investigated the hypothesis of a regulation by a crosstalk between auxin and a second biochemical signal, using dynamical modelling. We found that, in conifers, such a crosstalk is sufficient to simulate the characteristic features of wood formation dynamics, as well as the resulting tree-ring structure. In this model, auxin controls cell enlargement rates while another signal (e.g., cytokinin, TDIF) drives cell division and auxin polar transport.HighlightA dynamical model proves that two interacting signals (auxin, plus a cytokinin or the TDIF peptide) can drive wood formation dynamics and tree-ring structure development in conifers.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 349 ◽  
Author(s):  
Liying Qi ◽  
Ling Chen ◽  
Chuansen Wang ◽  
Shaoling Zhang ◽  
Yingjie Yang ◽  
...  

PIN-FORMED (PIN) encodes a key auxin polar transport family that plays a crucial role in the outward transport of auxin and several growth and development processes, including dwarfing trees. We identified a dwarfing pear rootstock ‘OHF51’ (Pyrus communis), which limits the growth vigor of the ‘Xueqing’ (Pyrus bretschneideri × Pyrus pyrifolia) scion, and isolated 14 putative PbPINs from the pear Pyrus bretschneideri. The phylogenic relationships, structure, promoter regions, and expression patterns were analyzed. PbPINs were classified into two main groups based on the protein domain structure and categorized into three major groups using the neighbor-joining algorithm. Promoter analysis demonstrated that PbPINs might be closely related to plant growth and development. Through quantitative real-time PCR (qRT-PCR) analysis, we found that the expression patterns of 14 PbPINs varied upon exposure to different organs in dwarfing and vigorous stocks, ‘OHF51’ and ‘QN101’ (Pyrus betulifolia), indicating that they might play varying roles in different tissues and participated in the regulation of growth vigor. These results provide fundamental insights into the characteristics and evolution of the PINs family, as well as the possible relationship between dwarfing ability and auxin polar transport.


Sign in / Sign up

Export Citation Format

Share Document