Chromatin-Independent Nuclear Envelope Assembly Induced by Ran GTPase in Xenopus Egg Extracts

Science ◽  
2000 ◽  
Vol 288 (5470) ◽  
pp. 1429-1432 ◽  
Author(s):  
C. Zhang
1995 ◽  
Vol 5 (11) ◽  
pp. 1270-1279 ◽  
Author(s):  
Mark A. Madine ◽  
Chong-Yee Khoo ◽  
Anthony D. Mills ◽  
Christine Musahl ◽  
Ronald A. Laskey

1998 ◽  
Vol 111 (24) ◽  
pp. 3675-3686 ◽  
Author(s):  
D. Lourim ◽  
G. Krohne

We have previously identified and quantitated three B-type lamin isoforms present in the nuclei of mature Xenopus laevis oocytes, and in cell-free egg extracts. As Xenopus egg extracts are frequently used to analyze nuclear envelope assembly and lamina functions, we felt it was imperative that the polymerization and chromatin-binding properties of the endogenous B-type egg lamins be investigated. While we have demonstrated that soluble B-type lamins bind to chromatin, we have also observed that the polymerization of egg lamins does not require membranes or chromatin. Lamin assembly is enhanced by the addition of glycogen/glucose, or by the depletion of ATP from the extract. Moreover, the polymerization of egg cytosol lamins and their binding to demembranated sperm or chromatin assembled from naked lambda-DNA is inhibited by an ATP regeneration system. These ATP-dependent inhibitory activities can be overcome by the coaddition of glycogen to egg cytosol. We have observed that glycogen does not alter ATP levels during cytosol incubation, but rather, as glycogen-enhanced lamin polymerization is inhibited by okadaic acid, we conclude that glycogen activates protein phosphatases. Because protein phosphatase 1 (PP1) is the only phosphatase known to be specifically regulated by glycogen our data indicate that PP1 is involved in lamin polymerization. Our results show that ATP and glycogen effect lamin polymerization and chromatin binding by separate and opposing mechanisms.


Author(s):  
Haruka Oda ◽  
Satsuki Kato ◽  
Keita Ohsumi ◽  
Mari Iwabuchi

Abstract In the nucleus of eukaryotic cells, chromatin is tethered to the nuclear envelope (NE), wherein inner nuclear membrane proteins (INMPs) play major roles. However, in Xenopus blastula, chromatin tethering to the NE depends on nuclear filamentous actin that develops in a blastula-specific manner. To investigate whether chromatin tethering operates in the blastula through INMPs, we experimentally introduced INMPs into Xenopus egg extracts that recapitulate nuclear formation in fertilized eggs. When expressed in extracts in which polymerization of actin is inhibited, only lamin B receptor (LBR), among the five INMPs tested, tethered chromatin to the NE, depending on its N2 and N3 domains responsible for chromatin-protein binding. N2-3-deleted LBR did not tether chromatin, although it was localized in the nuclei. We subsequently found that the LBR level was very low in the Xenopus blastula but was elevated after the blastula stage. When the LBR level was precociously elevated in the blastula by injecting LBR mRNA, it induced alterations in nuclear laminar architecture and nuclear morphology, and caused DNA damage and abnormal mitotic spindles, depending on the N2-3 domains. These results suggest that LBR-mediated chromatin tethering is circumvented in the Xenopus blastula, as it is detrimental to embryonic development.


1997 ◽  
Vol 110 (13) ◽  
pp. 1489-1502 ◽  
Author(s):  
C. Wiese ◽  
M.W. Goldberg ◽  
T.D. Allen ◽  
K.L. Wilson

We analyzed the pathway of nuclear envelope assembly in Xenopus egg extracts using field emission in-lens scanning electron microscopy. The binding, fusion, and flattening of vesicles onto the chromatin surface were visualized in detail. The first nuclear pore complexes assembled in flattened patches of nuclear envelope, before the chromatin was fully enclosed by membranes. Confirming previous transmission electron microscope observations, two morphologically distinct types of vesicles contributed to the nuclear membranes: ribosome-carrying (‘rough’) vesicles, many of which bound directly to chromatin, and ‘smooth’ vesicles, which appeared to associate primarily with other nuclear vesicles or membrane patches. The presence of ribosomes, an outer nuclear membrane marker, on many chromatin-binding vesicles suggested that chromatin-attachment proteins integral to the inner membrane were present on vesicles that also carried markers of the outer membrane and endoplasmic reticulum. Chromatin-associated vesicles also carried pore membrane proteins, since pore complexes formed when these vesicles were incubated with cytosol. A change in nuclear envelope morphology termed ‘envelope smoothing’ occurred 5–15 minutes after enclosure. Nuclear envelopes that were assembled in extracts depleted of wheat-germ-agglutinin-binding nucleoporins, and therefore unable to form functional pore complexes, remained wrinkled, suggesting that ‘smoothing’ required active nuclear transport. Lamins accumulated with time when nuclei were enclosed and had functional pore complexes, whereas lamins were not detected on nuclei that lacked functional pore complexes. Very low levels of lamins were detected on nuclear intermediates whose surfaces were substantially covered with patches of pore-complex-containing envelope, suggesting that pore complexes might be functional before enclosure.


FEBS Letters ◽  
1998 ◽  
Vol 428 (1-2) ◽  
pp. 52-56 ◽  
Author(s):  
Bo Zhang ◽  
Ying Chen ◽  
Zhiyang Han ◽  
Hans Ris ◽  
Zhonghe Zhai

1996 ◽  
Vol 135 (5) ◽  
pp. 1207-1218 ◽  
Author(s):  
S J Lawlis ◽  
S M Keezer ◽  
J R Wu ◽  
D M Gilbert

Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase-arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure.


2010 ◽  
Vol 190 (5) ◽  
pp. 807-822 ◽  
Author(s):  
Guillaume Bompard ◽  
Gabriel Rabeharivelo ◽  
Marie Frank ◽  
Julien Cau ◽  
Claude Delsert ◽  
...  

Ran is an essential GTPase that controls nucleocytoplasmic transport, mitosis, and nuclear envelope formation. These functions are regulated by interaction of Ran with different partners, and by formation of a Ran-GTP gradient emanating from chromatin. Here, we identify a novel level of Ran regulation. We show that Ran is a substrate for p21-activated kinase 4 (PAK4) and that its phosphorylation on serine-135 increases during mitosis. The endogenous phosphorylated Ran and active PAK4 dynamically associate with different components of the microtubule spindle during mitotic progression. A GDP-bound Ran phosphomimetic mutant cannot undergo RCC1-mediated GDP/GTP exchange and cannot induce microtubule asters in mitotic Xenopus egg extracts. Conversely, phosphorylation of GTP-bound Ran facilitates aster nucleation. Finally, phosphorylation of Ran on serine-135 impedes its binding to RCC1 and RanGAP1. Our study suggests that PAK4-mediated phosphorylation of GDP- or GTP-bound Ran regulates the assembly of Ran-dependent complexes on the mitotic spindle.


2004 ◽  
Vol 16 (2) ◽  
pp. 134
Author(s):  
R. Alberio ◽  
K.H.S. Campbell

The generation of animals by nuclear transplantation has demonstrated that a fully differentiated cell can be reversed into totipotency when transferred into an oocyte. Identification of oocyte specific molecules responsible for the reprogramming of somatic cells may contribute to the understanding of cell differentiation and embryo development. We have developed a heterologous system to investigate the effect of lamin B3, a major component of Xenopus laevis egg cytoplasm, on DNA replication of mammalian somatic cells. Bovine fetal fibroblasts were arrested at G1/S by incubation in aphidicolin for 18h. After permeabilization with digitonin, the cells were incubated in either (1) lamin B3 depleted, or (2) whole Xenopus egg extracts (1000 cells μL−1 extract) supplemented with an energy regenerating system for a period of 3h at 21°C. Xenopus lamin B3-depleted egg extracts were prepared by three rounds of incubation with Dynabeads coated with a mouse monoclonal lamin B3 antibody (mAbLB3). Immunodepletion was confirmed by western blotting. Purified lamin B3 was obtained by dialysis of the beads after immunodepletion, and the purified lamin B3 was used for rescue experiments. DNA replication of cells incubated in the extracts was assessed by adding 25μM Biotin-11-dUTP for 3h. After treatment cells were fixed in 70% methanol at −20°C and incubated in mAbLB3 for 30min at 37°C. This was followed by incubation in FITC-conjugated sheep anti-mouse antibody and in 5mgmL−1 Texas Red-conjugated Streptavidin for 40min at 37°C. After three hours’ incubation in egg extracts, DNA replication was detected in 60% of cells and more than 95% of cells were lamin B3 positive. In contrast, DNA replication in immunodepleted extracts was significantly lower (P≤0.01, by one-way ANOVA) than in cells incubated in whole extracts and was coincident with the few lamin B3-positive cells observed. More than 95% of cells were lamin B3-negative and did not replicate DNA. When purified lamin B3 was re-added to depleted extracts, DNA replication was detected in 60% of cells. DNA synthesis resumed in 93% of control cells 3h after release from aphidicolin into culture medium at 39°C. These experiments show that somatic nuclei, which possess a nuclear envelope with somatic variants of lamins, are able to synthesize DNA in egg extracts only when Xenopus lamin B3 is incorporated into the nuclear envelope. This heterologous system provides new information on the role of an embryonic molecule, namely Xenopus lamin B3, in the reprogramming of DNA replication of somatic cells incubated in egg environment. These results open new questions as to whether embryonic lamins also exist in mammals, and whether failure in development of cloned animals is in part due to abnormal or incomplete replacement of somatic variants of proteins with their embryonic counterparts.


Sign in / Sign up

Export Citation Format

Share Document