Prevention of type I diabetes in nonobese diabetic mice by virus infection

Science ◽  
1988 ◽  
Vol 239 (4839) ◽  
pp. 500-502 ◽  
Author(s):  
M. Oldstone
1993 ◽  
Vol 178 (3) ◽  
pp. 793-803 ◽  
Author(s):  
P L Podolin ◽  
A Pressey ◽  
N H DeLarato ◽  
P A Fischer ◽  
L B Peterson ◽  
...  

The development of type I diabetes in the nonobese diabetic (NOD) mouse is under the control of multiple genes, one or more of which is linked to the major histocompatibility complex (MHC). The MHC class II region has been implicated in disease development, with expression of an I-E transgene in NOD mice shown to provide protection from insulitis and diabetes. To examine the effect of expressing an I-E+ or I-E- non-NOD MHC on the NOD background, three I-E+ and three I-E- NOD MHC congenic strains (NOD.H-2i5, NOD.H-2k, and NOD.H-2h2, and NOD.H-2h4, NOD.H-2i7, and NOD.H-2b, respectively) were developed. Of these strains, both I-E+ NOD.H-2h2 and I-E- NOD.H-2h4 mice developed insulitis, but not diabetes. The remaining four congenic strains were free of insulitis and diabetes. These results indicate that in the absence of the NOD MHC, diabetes fails to develop. Each NOD MHC congenic strain was crossed with the NOD strain to produce I-E+ and I-E- F1 mice; these mice thus expressed one dose of the NOD MHC and one dose of a non-NOD MHC on the NOD background. While a single dose of a non-NOD MHC provided a large degree of disease protection to all of the F1 strains, a proportion of I-E+ and I-E- F1 mice aged 5-12 mo developed insulitis and cyclophosphamide-induced diabetes. When I-E+ F1 mice were aged 9-17 mo, spontaneous diabetes developed as well. These data are the first to demonstrate that I-E+ NOD mice develop diabetes, indicating that expression of I-E in NOD mice is not in itself sufficient to prevent insulitis or diabetes. In fact, I-E- F1 strains were no more protected from diabetes than I-E+ F1 strains, suggesting that other non-NOD MHC-linked genes are important in protection from disease. Finally, transfer of NOD bone marrow into irradiated I-E+ F1 recipients resulted in high incidences of diabetes, indicating that expression of non-NOD MHC products in the thymus, in the absence of expression in bone marrow-derived cells, is not sufficient to provide protection from diabetes.


Author(s):  
Jane E. Sinclair ◽  
Conor J. Bloxham ◽  
Han Chiu ◽  
Keng Yih Chew ◽  
Jake Russell ◽  
...  

People with diabetes mellitus are susceptible to both cardiovascular disease and severe influenza A virus infection. We hypothesized that diabetes also increases risks of influenza-associated cardiac complications. A murine type 1 (streptozotocin-induced) diabetes model was employed to investigate influenza-induced cardiac distress. Lung histopathology and viral titres revealed no difference in respiratory severity between infected control and diabetic mice. However, compared with infected control mice, infected diabetic mice had increased serum cardiac troponin I and creatine-kinase MB, left ventricular structural changes and right ventricular functional alterations, providing the first experimental evidence of type I diabetes increasing risks of influenza-induced cardiovascular complications.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 478-P
Author(s):  
KYOUNGMIN PARK ◽  
QIAN LI ◽  
HAIYAN WANG ◽  
RONALD ST-LOUIS ◽  
HISASHI YOKOMIZO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document