nonobese diabetic
Recently Published Documents


TOTAL DOCUMENTS

950
(FIVE YEARS 37)

H-INDEX

100
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Qi You ◽  
Yiming Shen ◽  
Yiling Wu ◽  
Yuyan Li ◽  
Chang Liu ◽  
...  

Increased formation of neutrophil extracellular traps (NETs) is associated with gut leakage in type 1 diabetes (T1D). To explore the mechanism of how enteropathy exacerbated by NETs triggers pancreatic autoimmunity in T1D, we carried out a correlation analysis for NET formation with gut barrier functions and autoimmunity in nonobese diabetic (NOD) mice. Inducing chronic colitis or knocking out of peptidyl arginine deiminase type 4 (PAD4) in NOD mice were used to further study the effect of NET formation on the progression of T1D. Microbial alterations in Deferribacteres and Proteobacteria, along with the loss of gut barrier function, were found to be associated with increased endotoxin and abnormal formation of NETs in NOD mice. Both DSS-induced colitis and knockout of PAD4 in NOD mice indicated that PAD4-dependent NET formation was involved in the aggravation of gut barrier dysfunction, the production of autoantibodies, and the activation of enteric autoimmune T cells, which then migrated to pancreatic lymph nodes (PLNs) and caused self-damage. The current study thus provides evidence that PAD4-dependent NET formation is engaged in leaky gut triggering pancreatic autoimmunity and suggests that either degradation of NETs or inhibition of NET formation may be helpful for innovative therapeutic interventions in T1D.


2021 ◽  
Vol 22 (7) ◽  
pp. 3767
Author(s):  
Merri-Grace Allred ◽  
Michael S. Chimenti ◽  
Ashley E. Ciecko ◽  
Yi-Guang Chen ◽  
Scott M. Lieberman

Type I interferons (IFNs) are required for spontaneous lacrimal gland inflammation in the nonobese diabetic (NOD) mouse model of Sjögren’s disease, but the consequences of type I IFN signaling are not well-defined. Here, we use RNA sequencing to define cytokine and chemokine genes upregulated in lacrimal glands of NOD mice in a type I IFN-dependent manner. Interleukin (IL)-21 was the highest differentially expressed cytokine gene, and Il21 knockout NOD mice were relatively protected from lacrimal gland inflammation. We defined a set of chemokines upregulated early in disease including Cxcl9 and Cxcl10, which share a receptor, CXCR3. CXCR3+ T cells were enriched in lacrimal glands with a dominant proportion of CXCR3+ regulatory T cells. Together these data define the early cytokine and chemokine signals associated with type I IFN-signaling in the development of lacrimal gland inflammation in NOD mice providing insight into the role of type I IFN in autoimmunity development.


2020 ◽  
Vol 21 (24) ◽  
pp. 9478
Author(s):  
Ivy L. Debreceni ◽  
Michael S. Chimenti ◽  
David V. Serreze ◽  
Aron M. Geurts ◽  
Yi-Guang Chen ◽  
...  

Sjögren syndrome (SS) is an immunologically complex, chronic autoimmune disease targeting lacrimal and salivary glands. Nonobese diabetic (NOD) mice spontaneously develop inflammation of lacrimal and salivary glands with histopathological features similar to SS in humans including focal lymphocytic infiltrates in the affected glands. The innate immune signals driving lymphocytic infiltration of these glands are not well-defined. Here we evaluate the role of Toll-like receptor (TLR) 7 in the development of SS-like manifestations in NOD mice. We created a Tlr7 knockout NOD mouse strain and performed histological and gene expression studies to characterize the effects of TLR7 on autoimmunity development. TLR7 was required for male-specific lacrimal gland inflammation but not for female-specific salivary gland inflammation. Moreover, TLR7 was required for type 1 diabetes development in male but not female NOD mice. RNA sequencing demonstrated that TLR7 was associated with a type I interferon (IFN) response and a type I IFN-independent B cell response in the lacrimal glands. Together these studies identify a previously unappreciated pathogenic role for TLR7 in lacrimal gland autoimmunity and T1D development in male NOD mice adding to the growing body of evidence supporting sex differences in mechanisms of autoimmune disease in NOD mice.


2020 ◽  
Vol 117 (49) ◽  
pp. 31219-31230
Author(s):  
Shanshan Tang ◽  
Mingfeng Zhang ◽  
Samuel Zeng ◽  
Yaxun Huang ◽  
Melissa Qin ◽  
...  

Type 1 diabetes (T1D) results from the autoimmune destruction of β cells, so cure of firmly established T1D requires both reversal of autoimmunity and restoration of β cells. It is known that β cell regeneration in nonautoimmune diabetic mice can come from differentiation of progenitors and/or transdifferentiation of α cells. However, the source of β cell regeneration in autoimmune nonobese diabetic (NOD) mice remains unclear. Here, we show that, after reversal of autoimmunity by induction of haploidentical mixed chimerism, administration of gastrin plus epidermal growth factor augments β cell regeneration and normalizes blood glucose in the firmly established diabetic NOD mice. Using transgenic NOD mice with inducible lineage-tracing markers for insulin-producing β cells, Sox9+ductal progenitors, Nestin+mesenchymal stem cells, and glucagon-producing α cells, we have found that both reactivation of dysfunctional low-level insulin expression (insulinlo) β cells and neogenesis contribute to the regeneration, with the latter predominantly coming from transdifferentiation of α cells. These results indicate that, after reversal of autoimmunity, reactivation of β cells and transdifferentiation of α cells can provide sufficient new functional β cells to reach euglycemia in firmly established T1D.


2020 ◽  
Author(s):  
Ada Admin ◽  
Terri C. Thayer ◽  
Joanne Davies ◽  
James A. Pearson ◽  
Stephanie J. Hanna ◽  
...  

Lymph node stromal cells (LNSC) are essential for providing and maintaining peripheral self-tolerance of potentially autoreactive cells. In type 1 diabetes, proinsulin-specific CD8<sup>+</sup>T-cells, escaping central and peripheral tolerance, contribute to beta-cell destruction. Using G9Cα<sup>-/-</sup>CD8<sup>+</sup>T-cells specific for proinsulin, we studied the mechanisms by which LNSC regulate low-avidity autoreactive cells in the nonobese diabetic (NOD) mouse model of type 1 diabetes. Whereas MHC-matched NOD-LNSC significantly reduced G9Cα<sup>-/-</sup>CD8<sup>+</sup>T-cell cytotoxicity and DC-induced proliferation, they failed to sufficiently regulate T-cells stimulated by anti-CD3/CD28. In contrast, non-MHC matched, control C57BL/6 mouse LNSC suppressed T-cell receptor engagement by anti-CD3/CD28 via MHC-independent mechanisms. This C57BL/6-LNSC suppression was maintained even after removal of the LNSC, demonstrating a direct effect of LNSC on T-cells, modifying antigen sensitivity and effector function. Thus, our results suggest that a loss of NOD-LNSC MHC-independent suppressive mechanisms may contribute to diabetes development.


2020 ◽  
Author(s):  
Ada Admin ◽  
Terri C. Thayer ◽  
Joanne Davies ◽  
James A. Pearson ◽  
Stephanie J. Hanna ◽  
...  

Lymph node stromal cells (LNSC) are essential for providing and maintaining peripheral self-tolerance of potentially autoreactive cells. In type 1 diabetes, proinsulin-specific CD8<sup>+</sup>T-cells, escaping central and peripheral tolerance, contribute to beta-cell destruction. Using G9Cα<sup>-/-</sup>CD8<sup>+</sup>T-cells specific for proinsulin, we studied the mechanisms by which LNSC regulate low-avidity autoreactive cells in the nonobese diabetic (NOD) mouse model of type 1 diabetes. Whereas MHC-matched NOD-LNSC significantly reduced G9Cα<sup>-/-</sup>CD8<sup>+</sup>T-cell cytotoxicity and DC-induced proliferation, they failed to sufficiently regulate T-cells stimulated by anti-CD3/CD28. In contrast, non-MHC matched, control C57BL/6 mouse LNSC suppressed T-cell receptor engagement by anti-CD3/CD28 via MHC-independent mechanisms. This C57BL/6-LNSC suppression was maintained even after removal of the LNSC, demonstrating a direct effect of LNSC on T-cells, modifying antigen sensitivity and effector function. Thus, our results suggest that a loss of NOD-LNSC MHC-independent suppressive mechanisms may contribute to diabetes development.


Sign in / Sign up

Export Citation Format

Share Document