scholarly journals Locally coordinated synaptic plasticity of visual cortex neurons in vivo

Science ◽  
2018 ◽  
Vol 360 (6395) ◽  
pp. 1349-1354 ◽  
Author(s):  
Sami El-Boustani ◽  
Jacque P. K. Ip ◽  
Vincent Breton-Provencher ◽  
Graham W. Knott ◽  
Hiroyuki Okuno ◽  
...  

Plasticity of cortical responses in vivo involves activity-dependent changes at synapses, but the manner in which different forms of synaptic plasticity act together to create functional changes in neurons remains unknown. We found that spike timing–induced receptive field plasticity of visual cortex neurons in mice is anchored by increases in the synaptic strength of identified spines. This is accompanied by a decrease in the strength of adjacent spines on a slower time scale. The locally coordinated potentiation and depression of spines involves prominent AMPA receptor redistribution via targeted expression of the immediate early gene product Arc. Hebbian strengthening of activated synapses and heterosynaptic weakening of adjacent synapses thus cooperatively orchestrate cell-wide plasticity of functional neuronal responses.

2018 ◽  
Author(s):  
Sami El-Boustani ◽  
Jacque P K Ip ◽  
Vincent Breton-Provencher ◽  
Hiroyuki Okuno ◽  
Haruhiko Bito ◽  
...  

AbstractPlasticity of cortical responses involves activity-dependent changes at synapses, but the manner in which different forms of synaptic plasticity act together to create functional changes in neuronal responses remains unknown. Here we show that spike-timing induced receptive field plasticity of individual visual cortex neurons in vivo is anchored by increases in synaptic strength of identified spines, and is accompanied by a novel decrease in the strength of adjacent spines on a slower time scale. The locally coordinated potentiation and depression of spines involves prominent AMPA receptor redistribution via targeted expression of the immediate early gene Arc. Similar changes accompany recovery of eye-specific responses following monocular deprivation. These findings demonstrate that Hebbian strengthening of activated synapses and heterosynaptic weakening of adjacent synapses, in dendrites with heterogeneous synaptic inputs, co-operatively orchestrate cell-wide plasticity of functional neuronal responses.One Sentence SummaryArc-mediated local synaptic plasticity regulates reorganization of synaptic responses on dendritic stretches to mediate functional plasticity of neuronal responses in vivo.


2016 ◽  
Vol 2016 ◽  
pp. 1-30 ◽  
Author(s):  
Maurizio De Pittà ◽  
Nicolas Brunel

Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Emily Petrus ◽  
Hey-Kyoung Lee

Alzheimer’s disease (AD) is the most common form of age-related dementia, which is thought to result from overproduction and/or reduced clearance of amyloid-beta (Aβ) peptides. Studies over the past few decades suggest that Aβis produced in an activity-dependent manner and has physiological relevance to normal brain functions. Similarly, physiological functions forβ- andγ-secretases, the two key enzymes that produce Aβby sequentially processing the amyloid precursor protein (APP), have been discovered over recent years. In particular, activity-dependent production of Aβhas been suggested to play a role in homeostatic regulation of excitatory synaptic function. There is accumulating evidence that activity-dependent immediate early gene Arc is an activity “sensor,” which acts upstream of Aβproduction and triggers AMPA receptor endocytosis to homeostatically downregulate the strength of excitatory synaptic transmission. We previously reported that Arc is critical for sensory experience-dependent homeostatic reduction of excitatory synaptic transmission in the superficial layers of visual cortex. Here we demonstrate that mice lacking the major neuronalβ-secretase, BACE1, exhibit a similar phenotype: stronger basal excitatory synaptic transmission and failure to adapt to changes in visual experience. Our results indicate that BACE1 plays an essential role in sensory experience-dependent homeostatic synaptic plasticity in the neocortex.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yanis Inglebert ◽  
Dominique Debanne

Since its discovery, spike timing-dependent synaptic plasticity (STDP) has been thought to be a primary mechanism underlying the brain’s ability to learn and to form new memories. However, despite the enormous interest in both the experimental and theoretical neuroscience communities in activity-dependent plasticity, it is still unclear whether plasticity rules inferred from in vitro experiments apply to in vivo conditions. Among the multiple reasons why plasticity rules in vivo might differ significantly from in vitro studies is that extracellular calcium concentration use in most studies is higher than concentrations estimated in vivo. STDP, like many forms of long-term synaptic plasticity, strongly depends on intracellular calcium influx for its induction. Here, we discuss the importance of considering physiological levels of extracellular calcium concentration to study functional plasticity.


2013 ◽  
Vol 110 (7) ◽  
pp. 1631-1645 ◽  
Author(s):  
R. C. Evans ◽  
Y. M. Maniar ◽  
K. T. Blackwell

The striatum of the basal ganglia demonstrates distinctive upstate and downstate membrane potential oscillations during slow-wave sleep and under anesthetic. The upstates generate calcium transients in the dendrites, and the amplitude of these calcium transients depends strongly on the timing of the action potential (AP) within the upstate. Calcium is essential for synaptic plasticity in the striatum, and these large calcium transients during the upstates may control which synapses undergo plastic changes. To investigate the mechanisms that underlie the relationship between calcium and AP timing, we have developed a realistic biophysical model of a medium spiny neuron (MSN). We have implemented sophisticated calcium dynamics including calcium diffusion, buffering, and pump extrusion, which accurately replicate published data. Using this model, we found that either the slow inactivation of dendritic sodium channels (NaSI) or the calcium inactivation of voltage-gated calcium channels (CDI) can cause high calcium corresponding to early APs and lower calcium corresponding to later APs. We found that only CDI can account for the experimental observation that sensitivity to AP timing is dependent on NMDA receptors. Additional simulations demonstrated a mechanism by which MSNs can dynamically modulate their sensitivity to AP timing and show that sensitivity to specifically timed pre- and postsynaptic pairings (as in spike timing-dependent plasticity protocols) is altered by the timing of the pairing within the upstate. These findings have implications for synaptic plasticity in vivo during sleep when the upstate-downstate pattern is prominent in the striatum.


2010 ◽  
Vol 22 (8) ◽  
pp. 2059-2085 ◽  
Author(s):  
Daniel Bush ◽  
Andrew Philippides ◽  
Phil Husbands ◽  
Michael O'Shea

Rate-coded Hebbian learning, as characterized by the BCM formulation, is an established computational model of synaptic plasticity. Recently it has been demonstrated that changes in the strength of synapses in vivo can also depend explicitly on the relative timing of pre- and postsynaptic firing. Computational modeling of this spike-timing-dependent plasticity (STDP) has demonstrated that it can provide inherent stability or competition based on local synaptic variables. However, it has also been demonstrated that these properties rely on synaptic weights being either depressed or unchanged by an increase in mean stochastic firing rates, which directly contradicts empirical data. Several analytical studies have addressed this apparent dichotomy and identified conditions under which distinct and disparate STDP rules can be reconciled with rate-coded Hebbian learning. The aim of this research is to verify, unify, and expand on these previous findings by manipulating each element of a standard computational STDP model in turn. This allows us to identify the conditions under which this plasticity rule can replicate experimental data obtained using both rate and temporal stimulation protocols in a spiking recurrent neural network. Our results describe how the relative scale of mean synaptic weights and their dependence on stochastic pre- or postsynaptic firing rates can be manipulated by adjusting the exact profile of the asymmetric learning window and temporal restrictions on spike pair interactions respectively. These findings imply that previously disparate models of rate-coded autoassociative learning and temporally coded heteroassociative learning, mediated by symmetric and asymmetric connections respectively, can be implemented in a single network using a single plasticity rule. However, we also demonstrate that forms of STDP that can be reconciled with rate-coded Hebbian learning do not generate inherent synaptic competition, and thus some additional mechanism is required to guarantee long-term input-output selectivity.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Gertrudis Perea ◽  
Aimei Yang ◽  
Edward S. Boyden ◽  
Mriganka Sur

2006 ◽  
Vol 86 (3) ◽  
pp. 1033-1048 ◽  
Author(s):  
Yang Dan ◽  
Mu-Ming Poo

Information in the nervous system may be carried by both the rate and timing of neuronal spikes. Recent findings of spike timing-dependent plasticity (STDP) have fueled the interest in the potential roles of spike timing in processing and storage of information in neural circuits. Induction of long-term potentiation (LTP) and long-term depression (LTD) in a variety of in vitro and in vivo systems has been shown to depend on the temporal order of pre- and postsynaptic spiking. Spike timing-dependent modification of neuronal excitability and dendritic integration was also observed. Such STDP at the synaptic and cellular level is likely to play important roles in activity-induced functional changes in neuronal receptive fields and human perception.


Sign in / Sign up

Export Citation Format

Share Document