scholarly journals A degenerate Fermi gas of polar molecules

Science ◽  
2019 ◽  
Vol 363 (6429) ◽  
pp. 853-856 ◽  
Author(s):  
Luigi De Marco ◽  
Giacomo Valtolina ◽  
Kyle Matsuda ◽  
William G. Tobias ◽  
Jacob P. Covey ◽  
...  

Experimental realization of a quantum degenerate gas of molecules would provide access to a wide range of phenomena in molecular and quantum sciences. However, the very complexity that makes ultracold molecules so enticing has made reaching degeneracy an outstanding experimental challenge over the past decade. We now report the production of a degenerate Fermi gas of ultracold polar molecules of potassium-rubidium. Through coherent adiabatic association in a deeply degenerate mixture of a rubidium Bose-Einstein condensate and a potassium Fermi gas, we produce molecules at temperatures below 0.3 times the Fermi temperature. We explore the properties of this reactive gas and demonstrate how degeneracy suppresses chemical reactions, making a long-lived degenerate gas of polar molecules a reality.

2017 ◽  
Vol 95 (5) ◽  
Author(s):  
Rianne S. Lous ◽  
Isabella Fritsche ◽  
Michael Jag ◽  
Bo Huang ◽  
Rudolf Grimm

2004 ◽  
Vol 92 (12) ◽  
Author(s):  
M. Bartenstein ◽  
A. Altmeyer ◽  
S. Riedl ◽  
S. Jochim ◽  
C. Chin ◽  
...  

2017 ◽  
Vol 119 (23) ◽  
Author(s):  
B. J. DeSalvo ◽  
Krutik Patel ◽  
Jacob Johansen ◽  
Cheng Chin

2019 ◽  
Vol 99 (5) ◽  
Author(s):  
Thomas M. Bersano ◽  
Junpeng Hou ◽  
Sean Mossman ◽  
Vandna Gokhroo ◽  
Xi-Wang Luo ◽  
...  

2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Michael MacCormick Cawte ◽  
Xiaoquan Yu ◽  
Brian P. Anderson ◽  
Ashton Bradley

A quantum vortex dipole, comprised of a closely bound pair of vortices of equal strength with opposite circulation, is a spatially localized travelling excitation of a planar superfluid that carries linear momentum, suggesting a possible analogy with ray optics. We investigate numerically and analytically the motion of a quantum vortex dipole incident upon a step-change in the background superfluid density of an otherwise uniform two-dimensional Bose-Einstein condensate. Due to the conservation of fluid momentum and energy, the incident and refracted angles of the dipole satisfy a relation analogous to Snell’s law, when crossing the interface between regions of different density. The predictions of the analogue Snell’s law relation are confirmed for a wide range of incident angles by systematic numerical simulations of the Gross-Piteavskii equation. Near the critical angle for total internal reflection, we identify a regime of anomalous Snell’s law behaviour where the finite size of the dipole causes transient capture by the interface. Remarkably, despite the extra complexity of the interface interaction, the incoming and outgoing dipole paths obey Snell’s law.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Barun Halder ◽  
Suranjana Ghosh ◽  
Pradosh Basu ◽  
Jayanta Bera ◽  
Boris Malomed ◽  
...  

We address dynamics of Bose-Einstein condensates (BECs) loaded into a one-dimensional four-color optical lattice (FOL) potential with commensurate wavelengths and tunable intensities. This configuration lends system-specific symmetry properties. The analysis identifies specific multi-parameter forms of the FOL potential which admits exact solitary-wave solutions. This newly found class of potentials includes more particular species, such as frustrated double-well superlattices, and bichromatic and three-color lattices, which are subject to respective symmetry constraints. Our exact solutions provide options for controllable positioning of density maxima of the localized patterns, and tunable Anderson-like localization in the frustrated potential. A numerical analysis is performed to establish dynamical stability and structural stability of the obtained solutions, which makes them relevant for experimental realization. The newly found solutions offer applications to the design of schemes for quantum simulations and processing quantum information.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
P. Manju ◽  
K. S. Hardman ◽  
P. B. Wigley ◽  
J. D. Close ◽  
N. P. Robins ◽  
...  

Abstract We numerically demonstrate atomic Fabry–Perot resonances for a pulsed interacting Bose–Einstein condensate (BEC) source transmitting through double Gaussian barriers. These resonances are observable for an experimentally-feasible parameter choice, which we determined using a previously-developed analytical model for a plane matter-wave incident on a double rectangular barrier system. Through numerical simulations using the non-polynomial Schödinger equation—an effective one-dimensional Gross–Pitaevskii equation—we investigate the effect of atom number, scattering length, and BEC momentum width on the resonant transmission peaks. For $$^{85}$$ 85 Rb atomic sources with the current experimentally-achievable momentum width of $$0.02 \hbar k_0$$ 0.02 ħ k 0 [$$k_0 = 2\pi /(780~\text {nm})$$ k 0 = 2 π / ( 780 nm ) ], we show that reasonably high contrast Fabry–Perot resonant transmission peaks can be observed using (a) non-interacting BECs, (b) interacting BECs of $$5 \times 10^4$$ 5 × 10 4 atoms with s-wave scattering lengths $$a_s=\pm 0.1a_0$$ a s = ± 0.1 a 0 ($$a_0$$ a 0 is the Bohr radius), and (c) interacting BECs of $$10^3$$ 10 3 atoms with $$a_s=\pm 1.0a_0$$ a s = ± 1.0 a 0 . Our theoretical investigation impacts any future experimental realization of an atomic Fabry–Perot interferometer with an ultracold atomic source.


Sign in / Sign up

Export Citation Format

Share Document