scholarly journals Exploring whole-genome duplicate gene retention with complex genetic interaction analysis

Science ◽  
2020 ◽  
Vol 368 (6498) ◽  
pp. eaaz5667 ◽  
Author(s):  
Elena Kuzmin ◽  
Benjamin VanderSluis ◽  
Alex N. Nguyen Ba ◽  
Wen Wang ◽  
Elizabeth N. Koch ◽  
...  

Whole-genome duplication has played a central role in the genome evolution of many organisms, including the human genome. Most duplicated genes are eliminated, and factors that influence the retention of persisting duplicates remain poorly understood. We describe a systematic complex genetic interaction analysis with yeast paralogs derived from the whole-genome duplication event. Mapping of digenic interactions for a deletion mutant of each paralog, and of trigenic interactions for the double mutant, provides insight into their roles and a quantitative measure of their functional redundancy. Trigenic interaction analysis distinguishes two classes of paralogs: a more functionally divergent subset and another that retained more functional overlap. Gene feature analysis and modeling suggest that evolutionary trajectories of duplicated genes are dictated by combined functional and structural entanglement factors.

2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Yanmei Yang ◽  
Jinpeng Wang ◽  
Jianyong Di

Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ao Li ◽  
Ai Liu ◽  
Xin Du ◽  
Jin-Yuan Chen ◽  
Mou Yin ◽  
...  

AbstractAlfalfa (Medicago sativa L.) is one of the most important and widely cultivated forage crops. It is commonly used as a vegetable and medicinal herb because of its excellent nutritional quality and significant economic value. Based on Illumina, Nanopore and Hi-C data, we assembled a chromosome-scale assembly of Medicago sativa spp. caerulea (voucher PI464715), the direct diploid progenitor of autotetraploid alfalfa. The assembled genome comprises 793.2 Mb of genomic sequence and 47,202 annotated protein-coding genes. The contig N50 length is 3.86 Mb. This genome is almost twofold larger and contains more annotated protein-coding genes than that of its close relative, Medicago truncatula (420 Mb and 44,623 genes). The more expanded gene families compared with those in M. truncatula and the expansion of repetitive elements rather than whole-genome duplication (i.e., the two species share the ancestral Papilionoideae whole-genome duplication event) may have contributed to the large genome size of M. sativa spp. caerulea. Comparative and evolutionary analyses revealed that M. sativa spp. caerulea diverged from M. truncatula ~5.2 million years ago, and the chromosomal fissions and fusions detected between the two genomes occurred during the divergence of the two species. In addition, we identified 489 resistance (R) genes and 82 and 85 candidate genes involved in the lignin and cellulose biosynthesis pathways, respectively. The near-complete and accurate diploid alfalfa reference genome obtained herein serves as an important complement to the recently assembled autotetraploid alfalfa genome and will provide valuable genomic resources for investigating the genomic architecture of autotetraploid alfalfa as well as for improving breeding strategies in alfalfa.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ya Wang ◽  
Fei Chen ◽  
Yuanchun Ma ◽  
Taikui Zhang ◽  
Pengchuan Sun ◽  
...  

AbstractTea, coffee, and cocoa are the three most popular nonalcoholic beverages in the world and have extremely high economic and cultural value. The genomes of four tea plant varieties have recently been sequenced, but there is some debate regarding the characterization of a whole-genome duplication (WGD) event in tea plants. Whether the WGD in the tea plant is shared with other plants in order Ericales and how it contributed to tea plant evolution remained unanswered. Here we re-analyzed the tea plant genome and provided evidence that tea experienced only WGD event after the core-eudicot whole-genome triplication (WGT) event. This WGD was shared by the Polemonioids-Primuloids-Core Ericales (PPC) sections, encompassing at least 17 families in the order Ericales. In addition, our study identified eight pairs of duplicated genes in the catechins biosynthesis pathway, four pairs of duplicated genes in the theanine biosynthesis pathway, and one pair of genes in the caffeine biosynthesis pathway, which were expanded and retained following this WGD. Nearly all these gene pairs were expressed in tea plants, implying the contribution of the WGD. This study shows that in addition to the role of the recent tandem gene duplication in the accumulation of tea flavor-related genes, the WGD may have been another main factor driving the evolution of tea flavor.


GigaScience ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Zheng Fan ◽  
Tao Yuan ◽  
Piao Liu ◽  
Lu-Yu Wang ◽  
Jian-Feng Jin ◽  
...  

Abstract Background The spider Trichonephila antipodiana (Araneidae), commonly known as the batik golden web spider, preys on arthropods with body sizes ranging from ∼2 mm in length to insects larger than itself (>20‒50 mm), indicating its polyphagy and strong dietary detoxification abilities. Although it has been reported that an ancient whole-genome duplication event occurred in spiders, lack of a high-quality genome has limited characterization of this event. Results We present a chromosome-level T. antipodiana genome constructed on the basis of PacBio and Hi-C sequencing. The assembled genome is 2.29 Gb in size with a scaffold N50 of 172.89 Mb. Hi-C scaffolding assigned 98.5% of the bases to 13 pseudo-chromosomes, and BUSCO completeness analysis revealed that the assembly included 94.8% of the complete arthropod universal single-copy orthologs (n = 1,066). Repetitive elements account for 59.21% of the genome. We predicted 19,001 protein-coding genes, of which 96.78% were supported by transcriptome-based evidence and 96.32% matched protein records in the UniProt database. The genome also shows substantial expansions in several detoxification-associated gene families, including cytochrome P450 mono-oxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters, reflecting the possible genomic basis of polyphagy. Further analysis of the T. antipodiana genome architecture reveals an ancient whole-genome duplication event, based on 2 lines of evidence: (i) large-scale duplications from inter-chromosome synteny analysis and (ii) duplicated clusters of Hox genes. Conclusions The high-quality T. antipodiana genome represents a valuable resource for spider research and provides insights into this species’ adaptation to the environment.


2010 ◽  
Vol 6 (11) ◽  
pp. 2305 ◽  
Author(s):  
Luigi Grassi ◽  
Diana Fusco ◽  
Alessandro Sellerio ◽  
Davide Corà ◽  
Bruno Bassetti ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shijing Feng ◽  
Zhenshan Liu ◽  
Jian Cheng ◽  
Zihe Li ◽  
Lu Tian ◽  
...  

AbstractZanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites, which create a characteristic aroma and tingling sensation in the mouth. Owing to the high proportion of repetitive sequences, high heterozygosity, and increased chromosome number of Z. bungeanum, the assembly of its chromosomal pseudomolecules is extremely challenging. Here, we present a genome sequence for Z. bungeanum, with a dramatically expanded size of 4.23 Gb, assembled into 68 chromosomes. This genome is approximately tenfold larger than that of its close relative Citrus sinensis. After the divergence of Zanthoxylum and Citrus, the lineage-specific whole-genome duplication event η-WGD approximately 26.8 million years ago (MYA) and the recent transposable element (TE) burst ~6.41 MYA account for the substantial genome expansion in Z. bungeanum. The independent Zanthoxylum-specific WGD event was followed by numerous fusion/fission events that shaped the genomic architecture. Integrative genomic and transcriptomic analyses suggested that prominent species-specific gene family expansions and changes in gene expression have shaped the biosynthesis of sanshools, terpenoids, and anthocyanins, which contribute to the special flavor and appearance of Z. bungeanum. In summary, the reference genome provides a valuable model for studying the impact of WGDs with recent TE activity on gene gain and loss and genome reconstruction and provides resources to accelerate Zanthoxylum improvement.


Sign in / Sign up

Export Citation Format

Share Document