scholarly journals Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases

Science ◽  
2020 ◽  
Vol 369 (6504) ◽  
pp. 698-702 ◽  
Author(s):  
Michitaka Notaguchi ◽  
Ken-ichi Kurotani ◽  
Yoshikatsu Sato ◽  
Ryo Tabata ◽  
Yaichi Kawakatsu ◽  
...  

Plant grafting is conducted for fruit and vegetable propagation, whereby a piece of living tissue is attached to another through cell-cell adhesion. However, graft compatibility limits combinations to closely related species, and the mechanism is poorly understood. We found that Nicotiana is capable of graft adhesion with a diverse range of angiosperms. Comparative transcriptomic analyses on graft combinations indicated that a subclade of β-1,4-glucanases secreted into the extracellular region facilitates cell wall reconstruction near the graft interface. Grafting was promoted by overexpression of the β-1,4-glucanase. Using Nicotiana stem as an interscion, we produced tomato fruits on rootstocks from other plant families. These findings demonstrate that the process of cell-cell adhesion is a potential target to enhance plant grafting techniques.

Author(s):  
Michitaka Notaguchi ◽  
Ken-ichi Kurotani ◽  
Yoshikatsu Sato ◽  
Ryo Tabata ◽  
Yaichi Kawakatsu ◽  
...  

Plant grafting is conducted for vegetative propagation in plants, whereby a piece of living tissue is attached to another tissue through establishment of cell–cell adhesion. Plant grafting has a long history in agriculture and has been applied to improve crop traits for thousands of years1. Plant grafting has mostly relied on the natural ability of a plant for wound healing. However, the compatibility of cell–cell adhesion typically limits graft combinations to closely related species2–4, and the mechanism by which cell–cell adhesion of injured tissues is established is largely unknown. Here, we show that a subclade of β-1,4-glucanases secreted into the extracellular region facilitates cell–cell adhesion near the graft interface. Nicotiana shows a propensity for cell–cell adhesion with a diverse range of angiosperms, including vegetables, fruit trees, and monocots, in which cell wall reconstruction was promoted in a similar manner to conventional intrafamily grafting5–7. Using transcriptomic approaches, we identified a specific clade of β-1,4-glucanases that is upregulated during grafting in successful graft combinations but not in incompatible grafts and precedes graft adhesion in inter- and intrafamily grafts. Grafting was facilitated with an overexpressor of the β-1,4-glucanase and, using Nicotiana stem as an interscion, we produced tomato fruits on rootstocks from other plant families. Our results demonstrate that the mechanism of cell–cell adhesion is partly conserved in plants and is a potential target to enhance plant grafting techniques.


Author(s):  
Ken-ichi Kurotani ◽  
Michitaka Notaguchi

Abstract Grafting is a means to connect tissues from two individual plants and grow a single chimeric plant through establishment of both apoplasmic and symplasmic connections. Recent molecular studies using RNA-sequencing data have provided genetic information on the processes involved in tissue reunion, including wound response, cell division, cell-cell adhesion, cell differentiation, and vascular formation. Thus, studies on grafting increase our understanding of various aspects of plant biology. Grafting has also been used to study systemic signaling and transport of micro- and macromolecules in the plant body. Given that graft viability and molecular transport across graft junctions largely depend on vascular formation, a major focus in grafting biology has been the mechanism of vascular development. In addition, it has been thought that symplasmic connections via plasmodesmata are fundamentally important to share cellular information among newly proliferated cells at the graft interface and to accomplish tissue differentiation correctly. Therefore, this review focuses on plasmodesmata formation during grafting. We take advantage of interfamily grafts for unambiguous identification of the graft interface and summarize morphological aspects of de novo formation of plasmodesmata. Important molecular events are addressed by re-examining the time-course transcriptome of interfamily grafts, from which we recently identified the cell-cell adhesion mechanism. Plasmodesmata-associated genes upregulated during graft healing that may provide a link to symplasm establishment are described. We also discuss future research directions.


2021 ◽  
Author(s):  
Sabyasachi Rakshit ◽  
Cheerneni Srini ◽  
Gayathri Singaraju ◽  
Nisha Arora ◽  
Sayan Das ◽  
...  

Abstract Cis and trans-interactions in cadherins are the foundations of cellular adhesions in multicellular organisms. While the trans-interactions mediate the intercellular attachment, the cis-interaction is presumed as reinforcement to trans. Thus, trans precedes cis has been the well-accepted model in cadherin adhesion. The stronger affinity of trans-binding over cis has been the decisive influence in the trans first model. Here we show that cadherin-23, a non-classical cadherin with an extended extracellular region, can undergo cis-clustering in solution independent of trans and phase separate as liquid droplets. Using single-molecule measurements, we decipher that weaker cis-interactions favor the cis-clustering. In-cellulo, the cis-clustering is manifested as puncta, a common feature in non-classical cadherin junctions, and accelerates the cell adhesion. The cis-clustering thus kinetically controls cell-adhesion before trans-binding. Notably, M2-macrophages predominantly express cadherin-23 and rapidly attach to circulatory tumor cells during metastatic migration. However, the relation of cis-clustering with rapid cell-cell adhesion in physiology is not yet established


2022 ◽  
Author(s):  
Cheerneni Sai Srinivas ◽  
Gayathri Sindhuri Singaraju ◽  
Sayan Das ◽  
Amin Sagar ◽  
Anuj Kumar ◽  
...  

Cis and trans-interactions in cadherins are the foundations of multicellularity. While the trans-interaction mediate cell-cell adhesion, the cis-interaction is postulated as strengthening to trans by clustering. The well-accepted model in cadherin-adhesion is that the trans precedes cis via a diffusion-trap kinetic model. Here we report that cadherin-23, a non-classical cadherin with an extended extracellular region, undergoes clustering in solution via lateral interactions independent of trans and phase separate as liquid droplets. In cellulo using fluorescence-recovery after the photobleaching, we noticed a significantly slow-diffusion of cadherin-23 at the intercellular junctions, indicating the diffusion of a cluster. The cis-clustering accelerates the cell-cell adhesion and, thus, kinetically controls cell-adhesion via cis precedes trans model. Though the connection of cis-clustering with the rapid adhesion is yet to explore, M2-macrophages that predominantly express cadherin-23 undergo fast attachments to circulatory tumor cells during metastasis.


2005 ◽  
Vol 173 (4S) ◽  
pp. 170-170
Author(s):  
Maxine G. Tran ◽  
Miguel A. Esteban ◽  
Peter D. Hill ◽  
Ashish Chandra ◽  
Tim S. O'Brien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document