scholarly journals Daily energy expenditure through the human life course

Science ◽  
2021 ◽  
Vol 373 (6556) ◽  
pp. 808-812
Author(s):  
Herman Pontzer ◽  
Yosuke Yamada ◽  
Hiroyuki Sagayama ◽  
Philip N. Ainslie ◽  
Lene F. Andersen ◽  
...  

Total daily energy expenditure (“total expenditure”) reflects daily energy needs and is a critical variable in human health and physiology, but its trajectory over the life course is poorly studied. We analyzed a large, diverse database of total expenditure measured by the doubly labeled water method for males and females aged 8 days to 95 years. Total expenditure increased with fat-free mass in a power-law manner, with four distinct life stages. Fat-free mass–adjusted expenditure accelerates rapidly in neonates to ~50% above adult values at ~1 year; declines slowly to adult levels by ~20 years; remains stable in adulthood (20 to 60 years), even during pregnancy; then declines in older adults. These changes shed light on human development and aging and should help shape nutrition and health strategies across the life span.

2000 ◽  
Vol 84 (4) ◽  
pp. 531-539 ◽  
Author(s):  
Jérôme Ribeyre ◽  
Nicole Fellmann ◽  
Jean Vernet ◽  
Michel Delaître ◽  
Alain Chamoux ◽  
...  

The objectives of the study were to determine: (1) daily energy expenditure (EE) of athletic and non-athletic adolescents of both sexes in free-living conditions; (2) day-to-day variations in daily EE during 1 week; (3) energy costs of the main activities; and (4) the effect of usual activity on EE during sleep, seated and miscellaneous activities. Fifty adolescents (four groups of eleven to fifteen boys or girls aged 16–19 years) participated in the study. Body composition was measured by the skinfold-thickness method, and VO2max and external mechanical power (EMP) by a direct method (respiratory gas exchanges) on a cycloergometer. Daily EE and partial EE in free-living conditions were computed from heart-rate (HR) recordings during seven consecutive days using individual prediction equations established from the data obtained during a 24 h period spent in whole-body calorimeters with similar activities. Fat-free mass (FFM), VO2max, EMP, daily EE and EE during sleep were significantly higher in athletic than in non-athletic subjects. After adjustment for FFM, VO2max, EMP, daily EE and EE during exercise were still higher in athletic than in non-athletic adolescents (P<0·001). However, adjusted sleeping EE was not significantly different between athletic and non-athletic adolescents. Increases in exercise EE were partly compensated for by significant reductions in EE during schoolwork and miscellaneous activities. Thus, the differences in daily EE between athletic and non-athletic subjects resulted mainly from increases in FFM and EE during exercise (duration and energy cost).


Sign in / Sign up

Export Citation Format

Share Document