scholarly journals Rapid assessment of SARS-CoV-2–evolved variants using virus-like particles

Science ◽  
2021 ◽  
Vol 374 (6575) ◽  
pp. 1626-1632 ◽  
Author(s):  
Abdullah M. Syed ◽  
Taha Y. Taha ◽  
Takako Tabata ◽  
Irene P. Chen ◽  
Alison Ciling ◽  
...  
2021 ◽  
Author(s):  
Abdullah M. Syed ◽  
Taha Y. Taha ◽  
Mir M. Khalid ◽  
Takako Tabata ◽  
Irene P. Chen ◽  
...  

Newly evolved SARS-CoV-2 variants are driving ongoing outbreaks of COVID-19 around the world. Efforts to determine why these viral variants have improved fitness are limited to mutations in the viral spike (S) protein and viral entry steps using non-SARS-CoV-2 viral particles engineered to display S. Here we show that SARS-CoV-2 virus-like particles can package and deliver exogenous transcripts, enabling analysis of mutations within all structural proteins and rapid dissection of multiple steps in the viral life cycle. Identification of an RNA packaging sequence was critical for engineered transcripts to assemble together with SARS-CoV-2 structural proteins S, nucleocapsid (N), membrane (M) and envelope (E) into non-replicative SARS-CoV-2 virus-like particles (SC2-VLPs) that deliver these transcripts to ACE2- and TMPRSS2-expressing cells. Using SC2-VLPs, we tested the effect of 30 individual mutations within the S and N proteins on particle assembly and entry. While S mutations unexpectedly did not affect these steps, SC2-VLPs bearing any one of four N mutations found universally in more-transmissible viral variants (P199L, S202R, R203M and R203K) showed increased particle production and up to 10-fold more reporter transcript expression in receiver cells. Our study provides a platform for rapid testing of viral variants outside a biosafety level 3 setting and identifies viral N mutations and viral particle assembly as mechanisms to explain the increased spread of current viral variants, including Delta (N:R203M).


Author(s):  
M.T. Otten ◽  
P.R. Buseck

ALCHEMI (Atom Location by CHannelling-Enhanced Microanalysis) is a TEM technique for determining site occupancies in single crystals. The method uses the channelling of incident electrons along specific crystallographic planes. This channelling results in enhanced x-ray emission from the atoms on those planes, thereby providing the required site-occupancy information. ALCHEMI has been applied with success to spinel, olivine and feldspar. For the garnets, which form a large group of important minerals and synthetic compounds, the channelling effect is weaker, and significant results are more difficult to obtain. It was found, however, that the channelling effect is pronounced for low-index zone-axis orientations, yielding a method for assessing site occupancies that is rapid and easy to perform.


2006 ◽  
Vol 44 (01) ◽  
Author(s):  
A Haberstroh ◽  
H Barth ◽  
EK Schnober ◽  
JM Pestka ◽  
HM Diepolder ◽  
...  

Acta Naturae ◽  
2011 ◽  
Vol 3 (3) ◽  
pp. 40-46 ◽  
Author(s):  
M V Arkhipenko ◽  
E K Petrova ◽  
N A Nikitin ◽  
A D Protopopova ◽  
E V Dubrovin ◽  
...  

Author(s):  
A.V. Churkov ◽  
◽  
A.A. Rogozin ◽  
V.M. Yatsenko ◽  
T.S. Ignatieva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document