Artificial snowmaking possibilities and climate change based on regional climate modeling in the Southern Black Forest

2012 ◽  
Vol 21 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Philipp Schmidt ◽  
Robert Steiger ◽  
Andreas Matzarakis
2020 ◽  
Vol 45 (1) ◽  
pp. 411-444 ◽  
Author(s):  
Valéry Masson ◽  
Aude Lemonsu ◽  
Julia Hidalgo ◽  
James Voogt

Cities are particularly vulnerable to extreme weather episodes, which are expected to increase with climate change. Cities also influence their own local climate, for example, through the relative warming known as the urban heat island (UHI) effect. This review discusses urban climate features (even in complex terrain) and processes. We then present state-of-the-art methodologies on the generalization of a common urban neighborhood classification for UHI studies, as well as recent developments in observation systems and crowdsourcing approaches. We discuss new modeling paradigms pertinent to climate impact studies, with a focus on building energetics and urban vegetation. In combination with regional climate modeling, new methods benefit the variety of climate scenarios and models to provide pertinent information at urban scale. Finally, this article presents how recent research in urban climatology contributes to the global agenda on cities and climate change.


2020 ◽  
Author(s):  
Janna Abalichin ◽  
Birte-Marie Ehlers ◽  
Frank Janssen

<p>The ‘German Strategy for Adaptation to Climate Change’ (DAS) provides the political framework to climate change mitigation and adaptation in Germany. The associated ‘Adaption Action Plan’ envisages the establishment of an operational forecasting and projection service for climate, extreme weather and coastal and inland waterbodies. This service is intended to make use of a regional climate modeling framework, with NEMO v4.0.(1) as the ocean component. The atmospheric component will be provided by the German Weather Service (either the current weather forecasting model ICON or COSMO will be used) and will be coupled to NEMO after testing and calibration of NEMO on the regional scale.</p><p>The area of interest includes besides the North Sea and the Baltic Sea the entire North-West-Shelf to take into account cross-shelf transport, the water exchange between North Sea and Baltic Sea and the impact of North Atlantic weather systems on the internal dynamics of the seas. One focus area will be German Bight, well known for its large tidal flats, which make wetting & drying a desirable model feature, which will be tested in future. The used/implemented bathymetry includes the up to date measurements of the sea floor from the EMODNET network.</p><p>To achieve a proper description of the dynamics in this region the model has to be calibrated with regard to the timing and amplitude of the water levels in the coastal waters, the water inflow through the Danish straits, the thermal stratification as well as the seasonality and thickness of the sea ice in the Northern Baltic Sea.</p><p>These efforts are carried out in the pilot project ‘Projection Service for Waterways and Shipping’ (ProWaS).</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Silvina A. Solman

This review summarizes the progress achieved on regional climate modeling activities over South America since the early efforts at the beginning of the 2000s until now. During the last 10 years, simulations with regional climate models (RCMs) have been performed for several purposes over the region. Early efforts were mainly focused on sensitivity studies to both physical mechanisms and technical aspects of RCMs. The last developments were focused mainly on providing high-resolution information on regional climate change. This paper describes the most outstanding contributions from the isolated efforts to the ongoing coordinated RCM activities in the framework of the CORDEX initiative, which represents a major endeavor to produce ensemble climate change projections at regional scales and allows exploring the associated range of uncertainties. The remaining challenges in modeling South American climate features are also discussed.


Author(s):  
Erik Kjellström ◽  
Ole Bøssing Christensen

Regional climate models (RCMs) are commonly used to provide detailed regional to local information for climate change assessments, impact studies, and work on climate change adaptation. The Baltic Sea region is well suited for RCM evaluation due to its complexity and good availability of observations. Evaluation of RCM performance over the Baltic Sea region suggests that: • Given appropriate boundary conditions, RCMs can reproduce many aspects of the climate in the Baltic Sea region. • High resolution improves the ability of RCMs to simulate significant processes in a realistic way. • When forced by global climate models (GCMs) with errors in their representation of the large-scale atmospheric circulation and/or sea surface conditions, performance of RCMs deteriorates. • Compared to GCMs, RCMs can add value on the regional scale, related to both the atmosphere and other parts of the climate system, such as the Baltic Sea, if appropriate coupled regional model systems are used. Future directions for regional climate modeling in the Baltic Sea region would involve testing and applying even more high-resolution, convection permitting, models to generally better represent climate features like heavy precipitation extremes. Also, phenomena more specific to the Baltic Sea region are expected to benefit from higher resolution (these include, for example, convective snowbands over the sea in winter). Continued work on better describing the fully coupled regional climate system involving the atmosphere and its interaction with the sea surface and land areas is also foreseen as beneficial. In this respect, atmospheric aerosols are important components that deserve more attention.


Author(s):  
Corinna Schrum

Regional models were originally developed to serve weather forecasting and regional process studies. Typical simulations encompass time periods in the order of days or weeks. Thereafter regional models were also used more and more as regional climate models for longer integrations and climate change downscaling. Regional climate modeling or regional dynamic downscaling, which are used interchangeably, developed as its own branch in climate research since the end of the 1990s out of the need to bridge the obvious inconsistencies at the interface of global climate research and climate impact research. The primary aim of regional downscaling is to provide consistent regional climate change scenarios with relevant spatial resolution to serve detailed climate impact assessments. Similar to global climate modeling, the early attempts at regional climate modeling were based on uncoupled atmospheric models or stand-alone ocean models, an approach that is still maintained as the most common on the regional scale. However, this approach has some fundamental limitations, since regional air-sea interaction remains unresolved and regional feedbacks are neglected. This is crucial when assessing climate change impacts in the coastal zone or the regional marine environment. To overcome these limitations, regional climate modeling is currently in a transition from uncoupled regional models into coupled atmosphere-ocean models, leading to fully integrated earth system models. Coupled ice-ocean-atmosphere models have been developed during the last decade and are currently robust and well established on the regional scale. Their added value has been demonstrated for regional climate modeling in marine regions, and the importance of regional air-sea interaction became obvious. Coupled atmosphere-ice-ocean models, but also coupled physical-biogeochemical modeling approaches are increasingly used for the marine realm. First attempts to couple these two approaches together with land surface models are underway. Physical coupled atmosphere-ocean modeling is also developing further and first model configurations resolving wave effects at the atmosphere-ocean interface are now available. These new developments now open up for improved regional assessment under broad consideration of local feedbacks and interactions between the regional atmosphere, cryosphere, hydrosphere, and biosphere.


Sign in / Sign up

Export Citation Format

Share Document