Fluid pressure variations in relation to multistage deformation and uplift: a fluid inclusion study of Au quartz veins

1993 ◽  
Vol 5 (1) ◽  
pp. 107-122 ◽  
Author(s):  
Michel Cathelineau ◽  
Marie Christine Boiron ◽  
Samira Essarraj ◽  
Jean Dubessy ◽  
Marc Lespinasse ◽  
...  
1991 ◽  
Vol 55 (379) ◽  
pp. 211-223 ◽  
Author(s):  
J. Mangas ◽  
A. Arribas

AbstractThe Penouta deposit is associated with a small Hercynian apogranite stock that intrudes Precambrian-Cambrian gneisses of the Ollo de Sapo Formation. Tin ore occurs as disseminations of cassiterite in the apogranite and as greisenized zones and quartz veins which traverse both the alkaline leucogranite and the surrounding metamorphic country rocks.A fluid-inclusion study, utilizing microthermometric, crushing tests and Raman spectroscopic techniques on quartz from an intragranitic vein and a greisen of the host rock, indicates that the evolution of fluids was similar in both samples and occurred in the three main stages: The first stage is characterized by complex CO2 (CO2-N2-CH4-H2S) and complex CO2 aqueous (H2O-NaCl-CO2-N2-CH4-H2S) fluids of low salinity (Tm ice > −6°C), homogenization temperatures between 250 and 410°C homogenization pressures below 900 bars, and thermobarometric trapping conditions with temperatures below 700°C and pressures below 3250 bars. These fluids were probably responsible for the greisenization of the apogranite and wall rocks, and the precipitation of cassiterite. The second stage is represented by low-salinity aqueous solutions (H2O-NaCl) with Tm ice ⩾ −4.5°C, trapped at homogenization temperatures between 110 and 300 °C and homogenization pressures below 100 bars. This stage can be correlated with kaolinization. The third stage is characterized by higher salinity aqueous fluids (Tm ice ⩾ −16.5°C) containing Na+ and other cations, trapped at homogenization temperatures between 100 and 130°C and homogenization pressures below 5 bars. These fluids can be associated with the epigenetic or supergene phases of the orebody.


1997 ◽  
Vol 39 (7) ◽  
pp. 578-588 ◽  
Author(s):  
Hartmut Beurlen ◽  
Marcelo R. R. Da Silva ◽  
Roberto B. Dos Santos

2015 ◽  
Vol 4 (2) ◽  
Author(s):  
Win Kant ◽  
I Wayan Warmada ◽  
Arifudin Idrus ◽  
Lucas Donny Setijadji ◽  
Koichiro Watanabe

The Soripesa prospect area is located at Maria village, Wawo district, Bima region in the eastern part of Sumbawa Island, Indonesia. This area is a part of Cenozoic Calc-alkaline volcanic inner Banda-Sunda Arc. The dominant lithology of Soripesa prospect area are a lithic-crystal tuff of andesitic and dacitic composition and bedded limestone. There have five main polymetallic epithermal quartz veins in the Soripesa prospect area, namely, Rini vein, Jambu air vein, Dollah vein, Merpati vein, and Arif vein. Those quartz veins are hosted mainly in andesitic volcaniclastic rocks. Fluid inclusion study on those quartz veins is vey important to know the condition of hydrothermal fluids and their origin. Fluid inclusion study is conducted at the laboratory of Earth Resources Engineering Department, Kyushu University, Japan. Homogenization temperature, freeze temperature, eutectic temperature, and melting temperature can be known from fluid inclusion study. Based on fluid inclusion study, formation temperatures of all veins are between 250–260◦C. Melting temperature is between -0.2 to -3◦C. Based on the melting temperature, salinity (wt.% NaCl equiv.) of fluid inclusions is calculated by using Bodnar’s equation. Paleodepth of formations and pressure of trapping are also estimated by using formation temperature and salinity. Based on Hass (1971) diagram, estimated paleodepths of formations are 270 m for Merpati vein, 400 m for Dollah vein, 480 m for Rini vein, 570 m for Arif vein, and 680 m for Jambu Air vein, respectively. Pressure of trapping can also be estimated from depth of formation, density of lithostatic overburden, and gravity; 72 bars for Merpati vein, 106 bars for Dollah vein, 127 bars for Rini vein, 151 bars for Arif vien, and 180 bars for Jambu Air vein, respectively. Keywords: Soripesa, polymetallic quartz veins, homogenization temperature, salinity.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Toe Naing Oo ◽  
Agung Harijoko ◽  
Lucas Donny Setijadji ◽  
Kotaro YONEZU

The Shwebontha Prospect area is one of prominent epithermal Au-Ag prospects in Monywa mining district, central Myanmar, characterized by the appearance of gold-bearing and base metal quartz veins with gold grade is around 3g/t -10.4g/t. The geology of the area consists of the volcanic and volcaniclastic rocks of Upper Oligocene-Middle Miocene Magyigon Formation that served as the host rock of the ore mineralization. This research focused on fluid inclusion study is aimed to know the characteristics of hydrothermal fluids during ore mineralization as well as the possible paleo- depth and temperature of formation of gold-bearing and base metal quartz veins. The mineralization styles are gold-bearing brecciated quartz veins and chalcedonic quartz veins where sulfides are clustered as well as disseminated both in quartz gangue and volcanic host rocks. Those quartz veins include pyrite, sphalerite, galena, chalcopyrite and gold (electrum). Fluid inclusion microthermometry indicates that the ore mineralization is characterized by the values of homogenization temperature range from 158°C to 310°C and salinities range from 0.35 to 2.41wt.% NaCl equiv. This temperature is consistent with the formation temperature of 250°C to 270 °C and also their estimate paleo-depth of formation is between 440m and 640m respectively. Microthermometric data indicates that fluid mixing and dilution were significant processes during ore mineralization and evolution of hydrothermal fluids. Based on the petrography of fluid inclusion, microthermometric measurements and ore minerals assemblage as well as estimation of paleo-depth from the Shwebontha Prospect imply that forming in under shallow level epithermal environment


Sign in / Sign up

Export Citation Format

Share Document