scholarly journals Fluid Inclusion Study of Epithermal Gold-Base Metal Mineralization System in the Shwebontha Prospect, Monywa Mining District, Central Myanmar Monywa

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Toe Naing Oo ◽  
Agung Harijoko ◽  
Lucas Donny Setijadji ◽  
Kotaro YONEZU

The Shwebontha Prospect area is one of prominent epithermal Au-Ag prospects in Monywa mining district, central Myanmar, characterized by the appearance of gold-bearing and base metal quartz veins with gold grade is around 3g/t -10.4g/t. The geology of the area consists of the volcanic and volcaniclastic rocks of Upper Oligocene-Middle Miocene Magyigon Formation that served as the host rock of the ore mineralization. This research focused on fluid inclusion study is aimed to know the characteristics of hydrothermal fluids during ore mineralization as well as the possible paleo- depth and temperature of formation of gold-bearing and base metal quartz veins. The mineralization styles are gold-bearing brecciated quartz veins and chalcedonic quartz veins where sulfides are clustered as well as disseminated both in quartz gangue and volcanic host rocks. Those quartz veins include pyrite, sphalerite, galena, chalcopyrite and gold (electrum). Fluid inclusion microthermometry indicates that the ore mineralization is characterized by the values of homogenization temperature range from 158°C to 310°C and salinities range from 0.35 to 2.41wt.% NaCl equiv. This temperature is consistent with the formation temperature of 250°C to 270 °C and also their estimate paleo-depth of formation is between 440m and 640m respectively. Microthermometric data indicates that fluid mixing and dilution were significant processes during ore mineralization and evolution of hydrothermal fluids. Based on the petrography of fluid inclusion, microthermometric measurements and ore minerals assemblage as well as estimation of paleo-depth from the Shwebontha Prospect imply that forming in under shallow level epithermal environment

2015 ◽  
Vol 4 (2) ◽  
Author(s):  
Win Kant ◽  
I Wayan Warmada ◽  
Arifudin Idrus ◽  
Lucas Donny Setijadji ◽  
Koichiro Watanabe

The Soripesa prospect area is located at Maria village, Wawo district, Bima region in the eastern part of Sumbawa Island, Indonesia. This area is a part of Cenozoic Calc-alkaline volcanic inner Banda-Sunda Arc. The dominant lithology of Soripesa prospect area are a lithic-crystal tuff of andesitic and dacitic composition and bedded limestone. There have five main polymetallic epithermal quartz veins in the Soripesa prospect area, namely, Rini vein, Jambu air vein, Dollah vein, Merpati vein, and Arif vein. Those quartz veins are hosted mainly in andesitic volcaniclastic rocks. Fluid inclusion study on those quartz veins is vey important to know the condition of hydrothermal fluids and their origin. Fluid inclusion study is conducted at the laboratory of Earth Resources Engineering Department, Kyushu University, Japan. Homogenization temperature, freeze temperature, eutectic temperature, and melting temperature can be known from fluid inclusion study. Based on fluid inclusion study, formation temperatures of all veins are between 250–260◦C. Melting temperature is between -0.2 to -3◦C. Based on the melting temperature, salinity (wt.% NaCl equiv.) of fluid inclusions is calculated by using Bodnar’s equation. Paleodepth of formations and pressure of trapping are also estimated by using formation temperature and salinity. Based on Hass (1971) diagram, estimated paleodepths of formations are 270 m for Merpati vein, 400 m for Dollah vein, 480 m for Rini vein, 570 m for Arif vein, and 680 m for Jambu Air vein, respectively. Pressure of trapping can also be estimated from depth of formation, density of lithostatic overburden, and gravity; 72 bars for Merpati vein, 106 bars for Dollah vein, 127 bars for Rini vein, 151 bars for Arif vien, and 180 bars for Jambu Air vein, respectively. Keywords: Soripesa, polymetallic quartz veins, homogenization temperature, salinity.


Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 58
Author(s):  
Antoni Camprubí ◽  
Eduardo González-Partida ◽  
Antonin Richard ◽  
Marie-Christine Boiron ◽  
Luis González-Ruiz ◽  
...  

The formation of most fluorite deposits in northern Coahuila (NE Mexico) is explained by MVT models, and is a part of the metallogenic province of northeastern Mexico. However, fluorite skarn deposits also occur in the same region, and there is evidence for late hydrothermal manifestations with no clear origin and evolution. The latter are the main focus of this study; in particular, F–Be–U–Mo–V–P stringers in the Aguachile-Cuatro Palmas area that overprint preexisting fluorite mantos. The region experienced the emplacement of several intrusives during the Eocene and the Oligocene that are collectively grouped into the East Mexico Alkaline Province (EMAP) and postdate MVT-like deposits. Some of these intrusives have associated skarn deposits; most of them are polymetallic, but the unusual El Pilote deposit contains fluorite mineralisation that was remobilised from MVT-like deposits. The formation of the Aguachile deposit (and, collectively, part of the Cuatro Palmas deposit) has been attributed to a shallow retrograde skarn model. The Cuatro Palmas and Las Alicias fluorite deposits consist of MVT-like deposits overprinted by late hydrothermal fluorite mineralisation rich in Be–U–Mo–V–P, and the Aguachile deposit consists entirely of the latter type. The systematic fluid inclusion study of MVT-like, skarn, and late hydrothermal fluorite deposits reveals a very different distribution of temperature and salinity data that allows the discrimination of mineralising fluids for the type of deposit. MVT-like deposits were formed by fluids with temperatures of homogenisation that range between 50 °C and 152 °C and salinities between 5 and 15.5 wt.% NaCl equivalent. The El Pilote fluorite skarn was formed by fluids with temperatures of homogenisation that range between 78 °C and 394 °C and salinities between 5 and 34 wt.% NaCl equivalent, and include CaCl2-rich brines with salinities that range between 24.5 and 29.1 wt.% CaCl2. Late shallow fluorite–Be–U–Mo–V–P hydrothermal deposits were formed by fluids with temperatures of homogenisation that range between 70 °C and 180 °C and salinities between 0.9 and 3.4 wt.% NaCl equivalent; the sole exception to the above is the La Fácil deposit, with salinities that range between 7.9 and 8.8 wt.% NaCl equivalent. While temperatures of homogenisation are similar between MVT-like and late hydrothermal deposits, and both even have hydrocarbon-rich fluid inclusion associations, the salinity of late deposits is similar to that of retrograde skarn fluids, although further diluted. However, homogenisation temperatures tend to be higher in late hydrothermal than in MVT-like deposits, thus making them more similar to retrograde skarn fluids. Although this characteristic cannot solely establish a genetic link between a retrograde skarn model and late hydrothermal deposits in the study area, the characteristics of fluids associated with the latter separate these deposits from those ascribed to an MVT-like model. Assuming that mineralising fluids for late fluorite–Be–U–Mo–V–P hydrothermal deposits may correspond to a retrograde skarn (or “epithermal”) deposit, the source for fluorine may be either from (A) the dissolution of earlier formed MVT-like deposits, (B) the entrainment of remaining F-rich basinal brines, or (C) hydrothermal fluids exsolved from highly evolved magmas. Possibilities A and B are feasible due to a hypothetical situation similar to the El Pilote skarn, and due to the occurrence of hydrocarbon-rich fluid inclusions at the La Fácil deposit. Possibility C is feasible because intrusive bodies related to highly evolved magmas would have provided other highly lithophile elements like Be, U and Mo upon the exsolution of their hydrothermal fluids. Such intrusive bodies occur in both study areas, and are particularly conspicuous at the Aguachile collapse structure.


1991 ◽  
Vol 55 (381) ◽  
pp. 605-611 ◽  
Author(s):  
D. H. M. Alderton ◽  
R. S. Harmon

AbstractThe oxygen and hydrogen isotope composition of hydrothermal fluids associated with the Variscan granites of southwest England has been inferred from analysis of various silicate minerals (predominantly quartz) and by direct analysis of fluid inclusions within quartz and fluorite. These data have been combined with the results of a fluid inclusion study to develop a model for the origin and evolution of hydrothermal fluids in the region. Magmatic fluids expelled from the granites had compositions in the range δD = −65 to −15‰, and δ18O = 9 to 13‰. Respective temperature, salinity, fluid δD, and fluid δ18O values for the (i) early Sn-W mineralization, (ii) later Cu-Pb-Zn sulphide mineralization, and (iii) latest ‘crosscourse’ Pb-Zn-F mineralization are: (i) 230–400 °C, 5–15 wt.% NaCl equiv., −39 to −16‰, and 7.0 to 11.2‰, (ii) 220–300 °C mostly 2–8 wt.% NaCl equiv., −41 to −9‰, and 2.3 to 8.1‰, and (iii) 110–150 °C 22–26 wt.% NaCl equiv., −45 to +2‰, and −1.8 to +5.5‰. These data highlight the important role of both magmatic fluids exsolved from the crystallizing granite, and basinal brines circulating within restricted fracture systems.


2020 ◽  
Vol 24 (3) ◽  
pp. 245-257
Author(s):  
Edwin Naranjo Sierra ◽  
Mauricio Alvaran Echeverri

The shear zone hosted lode gold type deposits are located at the northeast part of Antioquia department of Colombia. The characteristics of ore-forming fluids were discussed using fluid inclusion petrography and microthermometry analysis. Two stages, namely quartz-pyrite pre-mineralization stage (1) and reactivation-sulfides-tellurides mineralization stage (2) were included in this study. Two types of fluid inclusions were observed: primary aqueous-carbonic inclusions (type I) are characterized by the presence of clathrate, with salinities between 1.5 and 8.3 %wt NaCl equiv. and homogenization temperatures (to liquid) occurs between 238.1° and 297.1°C. Secondary aqueous inclusions (type II) were trapped in reactivated quartz (type IIa) and cross-cutting calcite veins (type IIb), salinity estimates display a mixing trend from a relatively saline with 9.21 %wt NaCl member (type IIa) to a low salinity one with 3.82 %wt NaCl (type IIb), homogenizations to a liquid phase occur between 150.8° and 184.6°C for type IIa inclusions and 130.3° to 190.4°C for type IIb. Based on these results, the shear zone hosted lode gold type deposits from El Bagre mining district, share similar characteristics with orogenic gold deposits.


1993 ◽  
Vol 5 (1) ◽  
pp. 107-122 ◽  
Author(s):  
Michel Cathelineau ◽  
Marie Christine Boiron ◽  
Samira Essarraj ◽  
Jean Dubessy ◽  
Marc Lespinasse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document