scholarly journals Effect of Therapeutic Chemical Agents In Vitro and on Experimental Meningoencephalitis Due to Naegleria fowleri

2008 ◽  
Vol 52 (11) ◽  
pp. 4010-4016 ◽  
Author(s):  
Jong-Hyun Kim ◽  
Suk-Yul Jung ◽  
Yang-Jin Lee ◽  
Kyoung-Ju Song ◽  
Daeho Kwon ◽  
...  

ABSTRACT Naegleria fowleri is a ubiquitous, pathogenic free-living amoeba; it is the most virulent Naegleria species and causes primary amoebic meningoencephalitis (PAME) in laboratory animals and humans. Although amphotericin B is currently the only agent available for the treatment of PAME, it is a very toxic antibiotic and may cause many adverse effects on other organs. In order to find other potentially therapeutic agents for N. fowleri infection, the present study was undertaken to evaluate the in vitro and in vivo efficacies of miltefosine and chlorpromazine against pathogenic N. fowleri. The result showed that the growth of the amoeba was effectively inhibited by treatment with amphotericin B, miltefosine, and chlorpromazine. When N. fowleri trophozoites were treated with amphotericin B, miltefosine, and chlorpromazine, the MICs of the drug were 0.78, 25, and 12.5 μg/ml, respectively, on day 2. In experimental meningoencephalitis of mice that is caused by N. fowleri, the survival rates of mice treated with amphotericin B, miltefosine, and chlorpromazine were 40, 55, and 75%, respectively, during 1 month. The average mean time to death for the amphotericin B, miltefosine, and chlorpromazine treatments was 17.9 days. In this study, the effect of drugs was found to be optimal when 20 mg/kg was administered three times on days 3, 7, and 11. Finally, chlorpromazine had the best therapeutic activity against N. fowleri in vitro and in vivo. Therefore, it may be a more useful therapeutic agent for the treatment of PAME than amphotericin B.

2003 ◽  
Vol 47 (2) ◽  
pp. 524-528 ◽  
Author(s):  
Shannon M. Goswick ◽  
George M. Brenner

ABSTRACT Inhalation of fresh water containing the free-living ameba Naegleria fowleri may lead to a potentially fatal infection known as primary amebic meningoencephalitis. Amphotericin B is the only agent with established clinical efficacy in the treatment of primary amebic meningoencephalitis in humans, but therapy with this drug is often associated with adverse effects on the kidneys and other organs, and not all persons treated with amphotericin B have survived. We investigated the in vitro activity and in vivo efficacy of newer therapeutic agents in an attempt to identify other useful agents for treating primary amebic meningoencephalitis. Azithromycin has shown in vitro activity against Acanthamoeba spp. and in vivo activity against experimental toxoplasmosis. In our study, the MIC of azithromycin against N. fowleri was 13.4 μM (10 μg/ml), which was 123 times greater than the MIC of amphotericin B, which was 0.108 μM (0.1 μg/ml). Azithromycin protected 100% of mice infected with N. fowleri at a dose of 75 mg/kg/day for 5 days, whereas amphotericin B protected only 50% of mice at a dose of 7.5 mg/kg/day for 5 days, and all control mice died during the 28-day observation period. We conclude that azithromycin has both in vitro and in vivo activity versus N. fowleri and may be a useful addition to therapy for primary amebic meningoencephalitis.


2006 ◽  
Vol 51 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Shannon M. Soltow ◽  
George M. Brenner

ABSTRACT Naegleria fowleri is responsible for producing a rapidly fatal central nervous system infection known as primary amebic meningoencephalitis (PAM). To date, amphotericin B, an antifungal agent, is the only agent with established clinical efficacy in the treatment of PAM. However, amphotericin B is not always successful in treating PAM and is associated with severe adverse effects. We previously found azithromycin to be more effective than amphotericin B in a mouse model of PAM. We therefore investigated the combination of amphotericin B and azithromycin in vitro and in a mouse model of PAM. For the in vitro studies, 50% inhibitory concentrations were calculated for each drug alone and for the drugs in fixed combination ratios of 1:1, 3:1, and 1:3. We found amphotericin B and azithromycin to be synergistic at all three of the fixed combination ratios. In our mouse model of PAM, a combination of amphotericin B (2.5 mg/kg of body weight) and azithromycin (25 mg/kg) protected 100% of the mice, whereas amphotericin B alone (2.5 mg/kg) protected only 27% of mice and azithromycin alone (25 mg/kg) protected 40% of mice. This study indicates that amphotericin B and azithromycin are synergistic against the Lee strain of N. fowleri, suggesting that the combined use of these agents may be beneficial in treating PAM.


2015 ◽  
Vol 59 (11) ◽  
pp. 6677-6681 ◽  
Author(s):  
Eddie Grace ◽  
Scott Asbill ◽  
Kris Virga

ABSTRACTNaegleria fowlerihas generated tremendous media attention over the last 5 years due to several high-profile cases. Several of these cases were followed very closely by the general public.N. fowleriis a eukaryotic, free-living amoeba belonging to the phylum Percolozoa.Naegleriaamoebae are ubiquitous in the environment, being found in soil and bodies of freshwater, and feed on bacteria found in those locations. WhileN. fowleriinfection appears to be quite rare compared to other diseases, the clinical manifestations of primary amoebic meningoencephalitis are devastating and nearly always fatal. Due to the rarity ofN. fowleriinfections in humans, there are no clinical trials to date that assess the efficacy of one treatment regimen over another. Most of the information regarding medication efficacy is based on either case reports orin vitrostudies. This review will discuss the pathogenesis, diagnosis, pharmacotherapy, and prevention ofN. fowleriinfections in humans, including a brief review of all survivor cases in North America.


2019 ◽  
Vol 11 (16) ◽  
pp. 2431-2437 ◽  
Author(s):  
Kavitha Rajendran ◽  
Ayaz Anwar ◽  
Naveed Ahmed Khan ◽  
Zara Aslam ◽  
Muhammad Raza Shah ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-3 ◽  
Author(s):  
Vinay Khanna ◽  
Ruchee Khanna ◽  
Shrikiran Hebbar ◽  
V. Shashidhar ◽  
Sunil Mundkar ◽  
...  

Primary amoebic meningoencephalitis (PAM) caused by free-living amebaeNaegleria fowleriis a rare and fatal condition. A fatal case of primary amoebic meningoencephalitis was diagnosed in a 5-month-old infant who presented with the history of decrease breast feeding, fever, vomiting, and abnormal body movements. Trophozoites ofNaegleria fowleriwere detected in the direct microscopic examination of CSF and infant was put on amphotericin B and ceftazidime. Patient condition deteriorated, and he was discharged against medical advice and subsequently expired. We also reviewed previously reported 8 Indian cases of primary amoebic meningoencephalitis (PAM) and observed that for the last 5 years, none of the patients responded to amphotericin B. Has an era of amphotericin B-resistantNaegleria fowleribeen emerged? Management strategy of PAM needs to be reviewed further.


Author(s):  
Anna Evdokiou ◽  
Francine Marciano‐Cabral ◽  
Melissa Jamerson

Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 689
Author(s):  
Hye Jee Hahn ◽  
Anjan Debnath

Free-living amoeba Naegleria fowleri causes a rapidly fatal infection primary amebic meningoencephalitis (PAM) in children. The drug of choice in treating PAM is amphotericin B, but very few patients treated with amphotericin B have survived PAM. Therefore, development of efficient drugs is a critical unmet need. We identified that the FDA-approved pitavastatin, an inhibitor of HMG Co-A reductase involved in the mevalonate pathway, was equipotent to amphotericin B against N. fowleri trophozoites. The genome of N. fowleri contains a gene encoding protein farnesyltransferase (FT), the last common enzyme for products derived from the mevalonate pathway. Here, we show that a clinically advanced FT inhibitor lonafarnib is active against different strains of N. fowleri with EC50 ranging from 1.5 to 9.2 µM. A combination of lonafarnib and pitavastatin at different ratios led to 95% growth inhibition of trophozoites and the combination achieved a dose reduction of about 2- to 28-fold for lonafarnib and 5- to 30-fold for pitavastatin. No trophozoite with normal morphology was found when trophozoites were treated for 48 h with a combination of 1.7 µM each of lonafarnib and pitavastatin. Combination of lonafarnib and pitavastatin may contribute to the development of a new drug regimen for the treatment of PAM.


Sign in / Sign up

Export Citation Format

Share Document