scholarly journals Capsid Assembly Modulators Have a Dual Mechanism of Action in Primary Human Hepatocytes Infected with Hepatitis B Virus

2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Jan Martin Berke ◽  
Pascale Dehertogh ◽  
Karen Vergauwen ◽  
Ellen Van Damme ◽  
Wendy Mostmans ◽  
...  

ABSTRACT Hepatitis B virus (HBV) capsid assembly is a critical step in the propagation of the virus and is mediated by the core protein. Due to its multiple functions in the viral life cycle, core became an attractive target for new antiviral therapies. Capsid assembly modulators (CAMs) accelerate the kinetics of capsid assembly and prevent encapsidation of the polymerase-pregenomic RNA (Pol-pgRNA) complex, thereby blocking viral replication. CAM JNJ-632 is a novel and potent inhibitor of HBV replication in vitro across genotypes A to D. It induces the formation of morphologically intact viral capsids, as demonstrated by size exclusion chromatography and electron microscopy studies. Antiviral profiling in primary human hepatocytes revealed that CAMs prevented formation of covalently closed circular DNA in a dose-dependent fashion when the compound was added together with the viral inoculum, whereas nucleos(t)ide analogues (NAs) did not. This protective effect translated into a dose-dependent reduction of intracellular HBV RNA levels as well as reduced HBe/cAg and HBsAg levels in the cell culture supernatant. The same observation was made with another CAM (BAY41-4109), suggesting that mechanistic rather than compound-specific effects play a role. Our data show that CAMs have a dual mechanism of action, inhibiting early and late steps of the viral life cycle. These effects clearly differentiate CAMs from NAs and may translate into higher functional cure rates in a clinical setting when given alone or in combination with the current standard of care.

2016 ◽  
Vol 90 (8) ◽  
pp. 3994-4004 ◽  
Author(s):  
Balasubramanian Venkatakrishnan ◽  
Sarah P. Katen ◽  
Samson Francis ◽  
Srinivas Chirapu ◽  
M. G. Finn ◽  
...  

ABSTRACTThough the hepatitis B virus (HBV) core protein is an important participant in many aspects of the viral life cycle, its best-characterized activity is self-assembly into 240-monomer capsids. Small molecules that target core protein (core protein allosteric modulators [CpAMs]) represent a promising antiviral strategy. To better understand the structural basis of the CpAM mechanism, we determined the crystal structure of the HBV capsid in complex with HAP18. HAP18 accelerates assembly, increases protein-protein association more than 100-fold, and induces assembly of nonicosahedral macrostructures. In a preformed capsid, HAP18 is found at quasiequivalent subunit-subunit interfaces. In a detailed comparison to the two other extant CpAM structures, we find that the HAP18-capsid structure presents a paradox. Whereas the two other structures expanded the capsid diameter by up to 10 Å, HAP18 caused only minor changes in quaternary structure and actually decreased the capsid diameter by ∼3 Å. These results indicate that CpAMs do not have a single allosteric effect on capsid structure. We suggest that HBV capsids present an ensemble of states that can be trapped by CpAMs, indicating a more complex basis for antiviral drug design.IMPORTANCEHepatitis B virus core protein has multiple roles in the viral life cycle—assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions—making it an attractive antiviral target. Core protein allosteric modulators (CpAMs) are an experimental class of antivirals that bind core protein. The most recognized CpAM activity is that they accelerate core protein assembly and strengthen interactions between subunits. In this study, we observe that the CpAM-binding pocket has multiple conformations. We compare structures of capsids cocrystallized with different CpAMs and find that they also affect quaternary structure in different ways. These results suggest that the capsid “breathes” and is trapped in different states by the drug and crystallization. Understanding that the capsid is a moving target will aid drug design and improve our understanding of HBV interaction with its environment.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47490 ◽  
Author(s):  
C. Nelson Hayes ◽  
Sakura Akamatsu ◽  
Masataka Tsuge ◽  
Daiki Miki ◽  
Rie Akiyama ◽  
...  

2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Jan Martin Berke ◽  
Pascale Dehertogh ◽  
Karen Vergauwen ◽  
Wendy Mostmans ◽  
Koen Vandyck ◽  
...  

ABSTRACT Capsid assembly is a critical step in the hepatitis B virus (HBV) life cycle, mediated by the core protein. Core is a potential target for new antiviral therapies, the capsid assembly modulators (CAMs). JNJ-56136379 (JNJ-6379) is a novel and potent CAM currently in phase II trials. We evaluated the mechanisms of action (MOAs) and antiviral properties of JNJ-6379 in vitro. Size exclusion chromatography and electron microscopy studies demonstrated that JNJ-6379 induced the formation of morphologically intact viral capsids devoid of genomic material (primary MOA). JNJ-6379 accelerated the rate and extent of HBV capsid assembly in vitro. JNJ-6379 specifically and potently inhibited HBV replication; its median 50% effective concentration (EC50) was 54 nM (HepG2.117 cells). In HBV-infected primary human hepatocytes (PHHs), JNJ-6379, when added with the viral inoculum, dose-dependently reduced extracellular HBV DNA levels (median EC50 of 93 nM) and prevented covalently closed circular DNA (cccDNA) formation, leading to a dose-dependent reduction of intracellular HBV RNA levels (median EC50 of 876 nM) and reduced antigen levels (secondary MOA). Adding JNJ-6379 to PHHs 4 or 5 days postinfection reduced extracellular HBV DNA and did not prevent cccDNA formation. Time-of-addition PHH studies revealed that JNJ-6379 most likely interfered with postentry processes. Collectively, these data demonstrate that JNJ-6379 has dual MOAs in the early and late steps of the HBV life cycle, which is different from the MOA of nucleos(t)ide analogues. JNJ-6379 is in development for chronic hepatitis B treatment and may translate into higher HBV functional cure rates.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Thomas Lahlali ◽  
Jan Martin Berke ◽  
Karen Vergauwen ◽  
Adrien Foca ◽  
Koen Vandyck ◽  
...  

ABSTRACT The assembly of hepatitis B virus (HBV) core protein (HBc) into capsids represents a critical step of viral replication. HBc has multiple functions during the HBV life cycle, which makes it an attractive target for antiviral therapies. Capsid assembly modulators (CAMs) induce the formation of empty capsid or aberrant capsid devoid of pregenomic RNA (pgRNA) and finally block relaxed circular DNA neosynthesis and virion progeny. In this study, the novel CAMs JNJ-827 and JNJ-890 were found to be potent inhibitors of HBV replication with respective half-maximal effective concentrations of 4.7 and 66 nM, respectively, in HepG2.117 cells. Antiviral profiling in differentiated HepaRG (dHepaRG) cells and primary human hepatocytes revealed that these compounds efficiently inhibited HBV replication, as well as de novo establishment of covalently closed circular DNA (cccDNA). In addition to these two known effects of CAMs, we observed for the first time that a CAM, here JNJ-827, when added postinfection for a short-term period, significantly reduced hepatitis B e antigen (HBeAg) secretion without affecting the levels of cccDNA amount, transcription, and hepatitis B surface antigen (HBsAg) secretion. This inhibitory activity resulted from a direct effect of JNJ-827 on HBeAg biogenesis. In a long-term treatment condition using persistently infected dHepaRG cells, JNJ-827 and JNJ-890 reduced HBsAg concomitantly with a decrease in viral total RNA and pgRNA levels. Altogether, these data demonstrate that some CAMs could interfere with multiple functions of HBc in the viral life cycle.


mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Andrew D. Huber ◽  
Jennifer J. Wolf ◽  
Dandan Liu ◽  
Anna T. Gres ◽  
Jing Tang ◽  
...  

ABSTRACTHeteroaryldihydropyrimidines (HAPs) are compounds that inhibit hepatitis B virus (HBV) replication by modulating viral capsid assembly. While their biophysical effects on capsid assemblyin vitrohave been previously studied, the effect of HAP treatment on capsid protein (Cp) in individual HBV-infected cells remains unknown. We report here that the HAP Bay 38-7690 promotes aggregation of recombinant Cpin vitroand causes a time- and dose-dependent decrease of Cp in infected cells, consistent with previously studied HAPs. Interestingly, immunofluorescence analysis showed Cp aggregating in nuclear foci of Bay 38-7690-treated infected cells in a time- and dose-dependent manner. We found these foci to be associated with promyelocytic leukemia (PML) nuclear bodies (NBs), which are structures that affect many cellular functions, including DNA damage response, transcription, apoptosis, and antiviral responses. Cp aggregation is not an artifact of the cell system used, as it is observed in HBV-expressing HepAD38 cells, in HepG2 cells transfected with an HBV-expressing plasmid, and in HepG2-NTCP cells infected with HBV. Use of a Cp overexpression vector without HBV sequences shows that aggregation is independent of viral replication, and use of an HBV-expressing plasmid harboring a HAP resistance mutation in Cp abrogated the aggregation, demonstrating that the effect is due to direct compound-Cp interactions. These studies provide novel insight into the effects of HAP-based treatment at a single-cell level.IMPORTANCEDespite the availability of effective vaccines and treatments, HBV remains a significant global health concern, with more than 240 million individuals chronically infected. Current treatments are highly effective at controlling viral replication and disease progression but rarely cure infections. Therefore, much emphasis is being placed on finding therapeutics with new drug targets, such as viral gene expression, covalently closed circular DNA formation and stability, capsid formation, and host immune modulators, with the ultimate goal of an HBV cure. Understanding the mechanisms by which novel antiviral agents act will be imperative for the development of curative HBV therapies.


2021 ◽  
Author(s):  
Geon-Woo Kim ◽  
Hasan Imam ◽  
Aleem Siddiqui

YTHDC1 and fragile X mental retardation protein (FMRP) bind N6-methyladenosine (m6A) modified RNAs and facilitate their transport to the cytoplasm. Here, we investigated the role of these proteins in Hepatitis B virus (HBV) gene expression and life cycle. We have previously reported that HBV transcripts are m6A-methylated and this modification regulates the viral life cycle. HBV is particularly interesting as its DNA genome upon transcription gives rise to a pregenomic RNA (pgRNA), which serves as a template for reverse transcription to produce the relaxed circular DNA that transforms into a covalently closed circular DNA (cccDNA). While m6A modification negatively affects RNA stability and translation of viral transcripts, our current results revealed the possibility that it may positively affect pgRNA encapsidation in the cytoplasm. Thus, it plays a differential dual role in the viral life cycle. YTHDC1 as well as FMRP recognize m6A-methylated HBV transcripts and facilitate their transport to the cytoplasm. In cells depleted with YTHDC1 or FMRP, viral transcripts accumulate in the nucleus to affect the viral life cycle. Most importantly, the core-associated DNA and subsequent cccDNA syntheses are dramatically affected in FMRP or YTHDC1-silenced cells. This study highlights the functional relevance of YTHDC1 and FMRP in the HBV life cycle with the potential to arrest liver disease pathogenesis. IMPORTANCE YTHDC1 and FMRP have been recently implicated in the nuclear export of m6A modified mRNAs. Here, we show that FMRP and YTHDC1 proteins bind with m6A-modified HBV transcripts and facilitate their nuclear export. In the absence of FMRP and YTHDC1, HBV transcripts accumulate inside the nucleus to reduce reverse transcription inside HBV core particles and subsequently the cccDNA synthesis. Our study shows how m6A binding proteins can regulate the HBV life cycle by facilitating the nuclear export of m6A-modified HBV RNA.


2016 ◽  
Vol 46 (9) ◽  
pp. 871-877 ◽  
Author(s):  
Kenichi Morikawa ◽  
Goki Suda ◽  
Naoya Sakamoto

2016 ◽  
Vol 90 (19) ◽  
pp. 8705-8719 ◽  
Author(s):  
Nuruddin Unchwaniwala ◽  
Nathan M. Sherer ◽  
Daniel D. Loeb

ABSTRACTTo understand subcellular sites of hepatitis B virus (HBV) replication, we visualized core (Cp), polymerase (Pol), and pregenomic RNA (pgRNA) in infected cells. Interestingly, we found that the majority of Pol localized to the mitochondria in cells undergoing viral replication. The mitochondrial localization of Pol was independent of both the cell type and other viral components, indicating that Pol contains an intrinsic mitochondrial targeting signal (MTS). Neither Cp nor pgRNA localized to the mitochondria during active replication, suggesting a role other than DNA synthesis for Pol at the mitochondria. The Pol of duck hepatitis B virus (DHBV) also localized to the mitochondria. This result indicates that localization of Pol to mitochondria is likely a feature of all hepadnaviruses. To map the MTS within HBV Pol, we generated a series of Pol-green fluorescent protein (Pol-GFP) fusions and found that a stretch spanning amino acids (aa) 141 to 160 of Pol was sufficient to target GFP to the mitochondria. Surprisingly, deleting aa 141 to 160 in full-length Pol did not fully ablate Pol's mitochondrial localization, suggesting that additional sequences are involved in mitochondrial targeting. Only by deleting the N-terminal 160 amino acids in full-length Pol was mitochondrial localization ablated. Crucial residues for pgRNA packaging are contained within aa 141 to 160, indicating a multifunctional role of this region of Pol in the viral life cycle. Our studies show an unexpected Pol trafficking behavior that is uncoupled from its role in viral DNA synthesis.IMPORTANCEChronic infection by HBV is a serious health concern. Existing therapies for chronically infected individuals are not curative, underscoring the need for a better understanding of the viral life cycle to develop better antiviral therapies. To date, the most thoroughly studied function of Pol is to package the pgRNA and reverse transcribe it to double-stranded DNA within capsids. This study provides evidence for mitochondrial localization of Pol and defines the MTS. Recent findings have implicated a non-reverse transcription role for Pol in evading host innate immune responses. Mitochondria play an important role in controlling cellular metabolism, apoptosis, and innate immunity. Pol may alter one or more of these host mitochondrial functions to gain a replicative advantage and persist in chronically infected individuals.


1992 ◽  
Vol 66 (2) ◽  
pp. 1223-1227 ◽  
Author(s):  
H E Blum ◽  
Z S Zhang ◽  
E Galun ◽  
F von Weizsäcker ◽  
B Garner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document