druggable targets
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 185)

H-INDEX

24
(FIVE YEARS 9)

2022 ◽  
Vol 23 (2) ◽  
pp. 657
Author(s):  
Xuan Wang ◽  
Yunhao Li ◽  
Jianqing Lu ◽  
Xiongwei Deng ◽  
Yan Wu

Despite advances in the development of tumor treatments, mortality from cancer continues to increase. Nanotechnology is expected to provide an innovative anti-cancer therapy, to combat challenges such as multidrug resistance and tumor recurrence. Nevertheless, tumors can greatly rely on autophagy as an alternative source for metabolites, and which desensitizes cancer cells to therapeutic stress, hindering the success of any current treatment paradigm. Autophagy is a conserved process by which cells turn over their own constituents to maintain cellular homeostasis. The multistep autophagic pathway provides potentially druggable targets to inhibit pro-survival autophagy under various therapeutic stimuli. In this review, we focus on autophagy inhibition based on functional nanoplatforms, which may be a potential strategy to increase therapeutic sensitivity in combinational cancer therapies, including chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy.


2021 ◽  
Vol 14 (4) ◽  
pp. 1781-1790
Author(s):  
Dalia Zaafar ◽  
Toka Elemary ◽  
Yara Abdel Hady ◽  
Aya Essawy

The term "non-druggable" refers to a protein that cannot be targeted pharmacologically; recently, significant efforts have been made to convert these proteins into targets that are reachable or "druggable." Pharmacologically targeting these difficult proteins has emerged as a major challenge in modern drug development, necessitating the innovation and development of new technologies. The idea of using RNA-targeting therapeutics as a platform to reach unreachable targets is very appealing. Antisense oligonucleotides, nucleic acid or aptamers, RNA interference therapeutics, microRNA, and synthetic RNA are examples of RNA-targeting therapeutics. Many of these agents were FDA-approved for the treatment of rare or genetic diseases, as well as molecular markers for disease diagnosis. As a promising type of therapeutic, many studies are being conducted in order for more and more of them to be approved and used in different disease treatments and to shift them from treating rare diseases only to being used as more specific targeting agents in the treatment of various common diseases. This article will look at some of the most recent technological and pharmaceutical advances that have contributed to the erosion of the concept of undruggability.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
Andreas Ouranidis ◽  
Theofanis Vavilis ◽  
Evdokia Mandala ◽  
Christina Davidopoulou ◽  
Eleni Stamoula ◽  
...  

In the quest for a formidable weapon against the SARS-CoV-2 pandemic, mRNA therapeutics have stolen the spotlight. mRNA vaccines are a prime example of the benefits of mRNA approaches towards a broad array of clinical entities and druggable targets. Amongst these benefits is the rapid cycle “from design to production” of an mRNA product compared to their peptide counterparts, the mutability of the production line should another target be chosen, the side-stepping of safety issues posed by DNA therapeutics being permanently integrated into the transfected cell’s genome and the controlled precision over the translated peptides. Furthermore, mRNA applications are versatile: apart from vaccines it can be used as a replacement therapy, even to create chimeric antigen receptor T-cells or reprogram somatic cells. Still, the sudden global demand for mRNA has highlighted the shortcomings in its industrial production as well as its formulation, efficacy and applicability. Continuous, smart mRNA manufacturing 4.0 technologies have been recently proposed to address such challenges. In this work, we examine the lab and upscaled production of mRNA therapeutics, the mRNA modifications proposed that increase its efficacy and lower its immunogenicity, the vectors available for delivery and the stability considerations concerning long-term storage.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Pier Francesco Ferrucci ◽  
Emilia Cocorocchio

Immunotherapy with Ipilimumab or antibodies against programmed death (ligand) 1 (anti-PD1/PDL1), targeted therapies with BRAF-inhibitors (anti-BRAF) and their combinations significantly changed melanoma treatment options in both primary, adjuvant and metastatic setting, allowing for a cure, or at least long-term survival, in most patients. However, up to 50% of those with advance or metastatic disease still have no significant benefit from such innovative therapies, and clinicians are not able to discriminate in advance neither who is going to respond and for how long nor who is going to develop collateral effects and which ones. However, druggable targets, as well as affordable and reliable biomarkers are needed to personalize resources at a single-patient level. In this manuscript, different molecules, genes, cells, pathways and even combinatorial algorithms or scores are included in four biomarker chapters (molecular, immunological, peripheral and gut microbiota) and reviewed in order to evaluate their role in indicating a patient’s possible response to treatment or development of toxicities.


2021 ◽  
Vol 9 (12) ◽  
pp. 2531
Author(s):  
Rana El Hajj ◽  
Lina Tawk ◽  
Shaymaa Itani ◽  
Maguy Hamie ◽  
Jana Ezzeddine ◽  
...  

Toxoplasmosis is a prevalent disease affecting a wide range of hosts including approximately one-third of the human population. It is caused by the sporozoan parasite Toxoplasma gondii (T. gondii), which instigates a range of symptoms, manifesting as acute and chronic forms and varying from ocular to deleterious congenital or neuro-toxoplasmosis. Toxoplasmosis may cause serious health problems in fetuses, newborns, and immunocompromised patients. Recently, associations between toxoplasmosis and various neuropathies and different types of cancer were documented. In the veterinary sector, toxoplasmosis results in recurring abortions, leading to significant economic losses. Treatment of toxoplasmosis remains intricate and encompasses general antiparasitic and antibacterial drugs. The efficacy of these drugs is hindered by intolerance, side effects, and emergence of parasite resistance. Furthermore, all currently used drugs in the clinic target acute toxoplasmosis, with no or little effect on the chronic form. In this review, we will provide a comprehensive overview on the currently used and emergent drugs and their respective parasitic targets to combat toxoplasmosis. We will also abridge the repurposing of certain drugs, their targets, and highlight future druggable targets to enhance the therapeutic efficacy against toxoplasmosis, hence lessening its burden and potentially alleviating the complications of its associated diseases.


2021 ◽  
Vol 22 (24) ◽  
pp. 13184
Author(s):  
Long Hoa Chung ◽  
Da Liu ◽  
Xin Tracy Liu ◽  
Yanfei Qi

Sphingolipids are a class of essential lipids implicated in constructing cellular membranes and regulating nearly all cellular functions. Sphingolipid metabolic network is centered with the ceramide–sphingomyelin axis. Ceramide is well-recognized as a pro-apoptotic signal; while sphingomyelin, as the most abundant type of sphingolipids, is required for cell growth. Therefore, the balance between these two sphingolipids can be critical for cancer cell survival and functioning. Ceramide transfer protein (CERT) dictates the ratio of ceramide to sphingomyelin within the cell. It is the only lipid transfer protein that specifically delivers ceramide from the endoplasmic reticulum to the Golgi apparatus, where ceramide serves as the substrate for sphingomyelin synthesis. In the past two decades, an increasing body of evidence has suggested a critical role of CERT in cancer, but much more intensive efforts are required to draw a definite conclusion. Herein, we review all research findings of CERT, focusing on its molecular structure, cellular functions and implications in cancer. This comprehensive review of CERT will help to better understand the molecular mechanism of cancer and inspire to identify novel druggable targets.


Author(s):  
Wesley S van de Geer ◽  
Youri Hoogstrate ◽  
Kaspar Draaisma ◽  
Pierre A Robe ◽  
Sander Bins ◽  
...  

Abstract Background The survival of glioblastoma patients is poor. Median survival after diagnosis is 15 months, despite treatment involving surgical resection, radiotherapy and/or temozolomide chemotherapy. Identification of novel targets and stratification strategies of glioblastoma patients to improve patient survival is urgently needed. Whole genome sequencing (WGS) is the most comprehensive means to identify such DNA-level targets. We report a unique set of WGS samples along with comprehensive analyses of the glioblastoma genome and potential clinical impact of WGS. Methods Our cohort consisted of 42 glioblastoma tumor tissue and matched whole-blood samples, which were whole-genome sequenced as part of the CPCT-02 study. Somatic single-nucleotide variants, small insertions/deletions, multi-nucleotide variants, copy-number alterations (CNAs) and structural variants were analyzed. These aberrations were harnessed to investigate driver genes, enrichments in CNAs, mutational signatures, fusion genes and potential targeted therapies. Results Tumor mutational burden (TMB) was similar to other WGS efforts (1-342 mutations per megabase pair). Mutational analysis in low TMB samples showed that the age-related CpG demethylation signature was dominant, while hyper- and ultramutated tumors had additional defective DNA mismatch repair signatures and showed microsatellite instability in their genomes. We detected chromothripsis in 24% of our cohort, recurrently on chromosomes 1 and 12. Recurrent non-coding regions only resulted in TERT promoter variants. Finally, we found biomarkers and potentially druggable changes in all but one of our tumor samples. Conclusions With high quality WGS data and comprehensive methods, we identified the landscape of driver gene events and druggable targets in glioblastoma patients.


2021 ◽  
Vol 15 (11) ◽  
pp. e0009991
Author(s):  
Margot J. Lautens ◽  
June H. Tan ◽  
Xènia Serrat ◽  
Samantha Del Borrello ◽  
Michael R. Schertzberg ◽  
...  

Soil transmitted helminths (STHs) are major human pathogens that infect over a billion people. Resistance to current anthelmintics is rising and new drugs are needed. Here we combine multiple approaches to find druggable targets in the anaerobic metabolic pathways STHs need to survive in their mammalian host. These require rhodoquinone (RQ), an electron carrier used by STHs and not their hosts. We identified 25 genes predicted to act in RQ-dependent metabolism including sensing hypoxia and RQ synthesis and found 9 are required. Since all 9 have mammalian orthologues, we used comparative genomics and structural modeling to identify those with active sites that differ between host and parasite. Together, we found 4 genes that are required for RQ-dependent metabolism and have different active sites. Finding these high confidence targets can open up in silico screens to identify species selective inhibitors of these enzymes as new anthelmintics.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Vincent De Smet ◽  
Nathalie Eysackers ◽  
Vincent Merens ◽  
Mina Kazemzadeh Dastjerd ◽  
Georg Halder ◽  
...  

AbstractActivated hepatic stellate cells (aHSC) are the main source of extra cellular matrix in liver fibrosis. Activation is classically divided in two phases: initiation and perpetuation. Currently, HSC-based therapeutic candidates largely focus on targeting the aHSCs in the perpetuation phase. However, the importance of HSC initiation during chronic liver disease (CLD) remains unclear. Here, we identified transcriptional programs of initiating and activated HSCs by RNA sequencing, using in vitro and in vivo mouse models of fibrosis. Importantly, we show that both programs are active in HSCs during murine and human CLD. In human cirrhotic livers, scar associated mesenchymal cells employ both transcriptional programs at the single cell level. Our results indicate that the transcriptional programs that drive the initiation of HSCs are still active in humans suffering from CLD. We conclude that molecules involved in the initiation of HSC activation, or in the maintenance of aHSCs can be considered equally important in the search for druggable targets of chronic liver disease.


Sign in / Sign up

Export Citation Format

Share Document