scholarly journals In Vitro Phenotypic Susceptibility of Human Immunodeficiency Virus Type 2 Clinical Isolates to Protease Inhibitors

2008 ◽  
Vol 52 (4) ◽  
pp. 1545-1548 ◽  
Author(s):  
Delphine Desbois ◽  
Bénédicte Roquebert ◽  
Gilles Peytavin ◽  
Florence Damond ◽  
Gilles Collin ◽  
...  

ABSTRACT We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.

2002 ◽  
Vol 76 (15) ◽  
pp. 7398-7406 ◽  
Author(s):  
Michael F. Maguire ◽  
Rosario Guinea ◽  
Philip Griffin ◽  
Sarah Macmanus ◽  
Robert C. Elston ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Gag protease cleavage sites (CS) undergo sequence changes during the development of resistance to several protease inhibitors (PIs). We have analyzed the association of sequence variation at the p7/p1 and p1/p6 CS in conjunction with amprenavir (APV)-specific protease mutations following PI combination therapy with APV. Querying a central resistance data repository resulted in the detection of significant associations (P < 0.001) between the presence of APV protease signature mutations and Gag L449F (p1/p6 LP1′F) and P453L (p1/p6 PP5′L) CS changes. In population-based sequence analyses the I50V mutant was invariably linked to either L449F or P453L. Clonal analysis revealed that both CS mutations were never present in the same genome. Sequential plasma samples from one patient revealed a transition from I50V M46L P453L viruses at early time points to I50V M46I L449F viruses in later samples. Various combinations of the protease and Gag mutations were introduced into the HXB2 laboratory strain of HIV-1. In both single- and multiple-cycle assay systems and in the context of I50V, the L449F and P453L changes consistently increased the 50% inhibitory concentration of APV, while the CS changes alone had no measurable effect on inhibitor sensitivity. The decreased in vitro fitness of the I50V mutant was only partially improved by addition of either CS change (I50V M46I L449F mutant replicative capacity ≈ 16% of that of wild-type virus). Western blot analysis of Pr55 Gag precursor cleavage products from infected-cell cultures indicated accumulation of uncleaved Gag p1-p6 in all I50V viruses without coexisting CS changes. Purified I50V protease catalyzed cleavage of decapeptides incorporating the L449F or P453L change 10-fold and 22-fold more efficiently than cleavage of the wild-type substrate, respectively. HIV-1 protease CS changes are selected during PI therapy and can have effects on both viral fitness and phenotypic resistance to PIs.


2008 ◽  
Vol 52 (4) ◽  
pp. 1337-1344 ◽  
Author(s):  
Tatyana Dekhtyar ◽  
Teresa I. Ng ◽  
Liangjun Lu ◽  
Sherie Masse ◽  
David A. DeGoey ◽  
...  

ABSTRACT A-790742 is a potent human immunodeficiency virus type 1 (HIV-1) protease inhibitor, with 50% effective concentrations ranging from 2 to 7 nM against wild-type HIV-1. The activity of this compound is lowered by approximately sevenfold in the presence of 50% human serum. A-790742 maintained potent antiviral activity against lopinavir-resistant variants generated in vitro as well as against a panel of molecular clones containing proteases derived from HIV-1 patient isolates with multiple protease mutations. During in vitro selection, A-790742 selected two primary mutations (V82L and I84V) along with L23I, L33F, K45I, A71V/A, and V77I in the pNL4-3 background and two other mutations (A71V and V82G) accompanied by M46I and L63P in the HIV-1 RF background. HIV-1 pNL4-3 clones with a single V82L or I84V mutation were phenotypically resistant to A-790742 and ritonavir. Taking these results together, A-790742 displays a favorable anti-HIV-1 profile against both the wild type and a large number of mutants resistant to other protease inhibitors. The selection of the uncommon V82L and V82G mutations in protease by A-790742 suggests the potential for an advantageous resistance profile with this protease inhibitor.


2007 ◽  
Vol 81 (10) ◽  
pp. 5144-5154 ◽  
Author(s):  
S. Muzammil ◽  
A. A. Armstrong ◽  
L. W. Kang ◽  
A. Jakalian ◽  
P. R. Bonneau ◽  
...  

ABSTRACT Drug resistance is a major problem affecting the clinical efficacy of antiretroviral agents, including protease inhibitors, in the treatment of infection with human immunodeficiency virus type 1 (HIV-1)/AIDS. Consequently, the elucidation of the mechanisms by which HIV-1 protease inhibitors maintain antiviral activity in the presence of mutations is critical to the development of superior inhibitors. Tipranavir, a nonpeptidic HIV-1 protease inhibitor, has been recently approved for the treatment of HIV infection. Tipranavir inhibits wild-type protease with high potency (Ki = 19 pM) and demonstrates durable efficacy in the treatment of patients infected with HIV-1 strains containing multiple common mutations associated with resistance. The high potency of tipranavir results from a very large favorable entropy change (−TΔS = −14.6 kcal/mol) combined with a favorable, albeit small, enthalpy change (ΔH = −0.7 kcal/mol, 25°C). Characterization of tipranavir binding to wild-type protease, active site mutants I50V and V82F/I84V, the multidrug-resistant mutant L10I/L33I/M46I/I54V/L63I/V82A/I84V/L90M, and the tipranavir in vitro-selected mutant I13V/V32L/L33F/K45I/V82L/I84V was performed by isothermal titration calorimetry and crystallography. Thermodynamically, the good response of tipranavir arises from a unique behavior: it compensates for entropic losses by actual enthalpic gains or by sustaining minimal enthalpic losses when facing the mutants. The net result is a small loss in binding affinity. Structurally, tipranavir establishes a very strong hydrogen bond network with invariant regions of the protease, which is maintained with the mutants, including catalytic Asp25 and the backbone of Asp29, Asp30, Gly48 and Ile50. Moreover, tipranavir forms hydrogen bonds directly to Ile50, while all other inhibitors do so by being mediated by a water molecule.


2000 ◽  
Vol 38 (4) ◽  
pp. 1370-1374 ◽  
Author(s):  
Berta Rodés ◽  
Africa Holguín ◽  
Vincent Soriano ◽  
Manuela Dourana ◽  
Kamal Mansinho ◽  
...  

The reverse transcriptase (RT) and protease genes from 12 human immunodeficiency virus type 2 (HIV-2)-infected individuals who had been exposed to antiretroviral drugs for longer than 6 months were examined for the presence of mutations which could be involved in drug resistance. Four individuals carried virus genotypes with amino acid substitutions potentially associated with resistance to nucleoside analogues: two at codon 70 (K→R) and two at codon 184 (M→V). Moreover, the latter two patients harbored a codon Q151M mutation which is associated to multidrug resistance in HIV-1, and one of these subjects carried some of the typically linked mutations at codons 65 and 69. With regard to the protease inhibitors, substitutions associated with resistance to protease inhibitors at codon 46 were observed in all individuals. Moreover, minor resistance mutations, as well as new ones of unknown meaning, were often seen in the protease gene. In conclusion, amino acid changes in the HIV-2 RT and protease genes which could be associated with drug resistance seem to occur at positions identical to those for HIV-1.


2008 ◽  
Vol 52 (7) ◽  
pp. 2435-2441 ◽  
Author(s):  
U. Lek-Uthai ◽  
R. Suwanarusk ◽  
R. Ruengweerayut ◽  
T. S. Skinner-Adams ◽  
F. Nosten ◽  
...  

ABSTRACT Recent studies using laboratory clones have demonstrated that several antiretroviral protease inhibitors (PIs) inhibit the growth of Plasmodium falciparum at concentrations that may be of clinical significance, especially during human immunodeficiency virus type 1 (HIV-1) and malaria coinfection. Using clinical isolates, we now demonstrate the in vitro effectiveness of two HIV-1 aspartic PIs, saquinavir (SQV) and ritonavir (RTV), against P. vivax (n = 30) and P. falciparum (n = 20) from populations subjected to high levels of mefloquine and artesunate pressure on the Thailand-Myanmar border. The median 50% inhibitory concentration values of P. vivax to RTV and SQV were 2,233 nM (range, 732 to 7,738 nM) and 4,230 nM (range, 1,326 to 8,452 nM), respectively, both within the therapeutic concentration range commonly found for patients treated with these PIs. RTV was fourfold more effective at inhibiting P. vivax than it was at inhibiting P. falciparum, compared to a twofold difference in SQV sensitivity. An increased P. falciparum mdr1 copy number was present in 33% (3/9) of isolates and that of P. vivax mdr1 was present in 9% of isolates (2/22), but neither was associated with PI sensitivity. The inter-Plasmodium sp. variations in PI sensitivity indicate key differences between P. vivax and P. falciparum. PI-containing antiretroviral regimens may demonstrate prophylactic activity against both vivax and falciparum malaria in HIV-infected patients who reside in areas where multidrug-resistant P. vivax or P. falciparum is found.


2005 ◽  
Vol 79 (19) ◽  
pp. 12584-12591 ◽  
Author(s):  
Richard Lu ◽  
Nick Vandegraaff ◽  
Peter Cherepanov ◽  
Alan Engelman

ABSTRACT Retroviral integrases (INs) function in the context of preintegration complexes (PICs). Two conserved Lys residues in the N-terminal domain of human immunodeficiency virus type 1 (HIV-1) IN were analyzed here for their roles in integration and virus replication. Whereas HIV-1K46A grew like the wild type, HIV-1K34A was dead. Yet recombinant INK34A protein functioned in in vitro integration assays, and Vpr-INK34A efficiently transcomplemented the infectivity defect of an IN active site mutant virus in cells. HIV-1K34A was therefore similar to a number of previously characterized mutant viruses that failed to replicate despite encoding catalytically competent IN. To directly analyze mutant PIC function, a sensitive PCR-based integration assay was developed. HIV-1K34A and related mutants failed to support detectable levels (<1% of wild type) of integration. We therefore concluded that mutations like K34A disrupted higher-order interactions important for PIC function/maturation compared to the innate catalytic activity of IN enzyme.


2005 ◽  
Vol 79 (16) ◽  
pp. 10247-10257 ◽  
Author(s):  
Johanna Wapling ◽  
Katie L. Moore ◽  
Secondo Sonza ◽  
Johnson Mak ◽  
Gilda Tachedjian

ABSTRACT The specific impact of mutations that abrogate human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) dimerization on virus replication is not known, as mutations shown previously to inhibit RT dimerization also impact Gag-Pol stability, resulting in pleiotropic effects on HIV-1 replication. We have previously characterized mutations at codon 401 in the HIV-1 RT tryptophan repeat motif that abrogate RT dimerization in vitro, leading to a loss in polymerase activity. The introduction of the RT dimerization-inhibiting mutations W401L and W401A into HIV-1 resulted in the formation of noninfectious viruses with reduced levels of both virion-associated and intracellular RT activity compared to the wild-type virus and the W401F mutant, which does not inhibit RT dimerization in vitro. Steady-state levels of the p66 and p51 RT subunits in viral lysates of the W401L and W401A mutants were reduced, but no significant decrease in Gag-Pol was observed compared to the wild type. In contrast, there was a decrease in processing of p66 to p51 in cell lysates for the dimerization-defective mutants compared to the wild type. The treatment of transfected cells with indinavir suggested that the HIV-1 protease contributed to the degradation of virion-associated RT subunits. These data demonstrate that mutations near the RT dimer interface that abrogate RT dimerization in vitro result in the production of replication-impaired viruses without detectable effects on Gag-Pol stability or virion incorporation. The inhibition of RT activity is most likely due to a defect in RT maturation, suggesting that RT dimerization represents a valid drug target for chemotherapeutic intervention.


2002 ◽  
Vol 76 (3) ◽  
pp. 1015-1024 ◽  
Author(s):  
Barbara Müller ◽  
Tilo Patschinsky ◽  
Hans-Georg Kräusslich

ABSTRACT The Gag-derived protein p6 of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the release of virions from the membranes of infected cells. It is presumed that p6 and functionally related proteins from other viruses act as adapters, recruiting cellular factors to the budding site. This interaction is mediated by so-called late domains within the viral proteins. Previous studies had suggested that virus release from the plasma membrane shares elements with the cellular endocytosis machinery. Since protein phosphorylation is known to be a regulatory mechanism in these processes, we have investigated the phosphorylation of HIV-1 structural proteins. Here we show that p6 is the major phosphoprotein of HIV-1 particles. After metabolic labeling of infected cells with [ortho- 32P]phosphate, we found that phosphorylated p6 from infected cells and from virus particles consisted of several forms, suggesting differential phosphorylation at multiple sites. Apparently, phosphorylation occurred shortly before or after the release of p6 from Gag and involved only a minor fraction of the total virion-associated p6 molecules. Phosphoamino acid analysis indicated phosphorylation at Ser and Thr, as well as a trace of Tyr phosphorylation, supporting the conclusion that multiple phosphorylation events do occur. In vitro experiments using purified virus revealed that endogenous or exogenously added p6 was efficiently phosphorylated by virion-associated cellular kinase(s). Inhibition experiments suggested that a cyclin-dependent kinase or a related kinase, most likely ERK2, was involved in p6 phosphorylation by virion-associated enzymes.


Sign in / Sign up

Export Citation Format

Share Document