scholarly journals Validation of Antibiotic Susceptibility Testing Guidelines in a Routine Clinical Microbiology Laboratory Exemplifies General Key Challenges in Setting Clinical Breakpoints

2014 ◽  
Vol 58 (7) ◽  
pp. 3921-3926 ◽  
Author(s):  
Michael Hombach ◽  
Patrice Courvalin ◽  
Erik C. Böttger

ABSTRACTThis study critically evaluated the new European Committee for Antimicrobial Susceptibility Testing (EUCAST) antibiotic susceptibility testing guidelines on the basis of a large set of disk diffusion diameters determined for clinical isolates. We report several paradigmatic problems that illustrate key issues in the selection of clinical susceptibility breakpoints, which are of general importance not only for EUCAST but for all guidelines systems, i.e., (i) the need for species-specific determinations of clinical breakpoints/epidemiological cutoffs (ECOFFs), (ii) problems arising from pooling data from various sources, and (iii) the importance of the antibiotic disk content for separating non-wild-type and wild-type populations.

2008 ◽  
Vol 52 (9) ◽  
pp. 3092-3098 ◽  
Author(s):  
Marie Desnos-Ollivier ◽  
Stéphane Bretagne ◽  
Dorothée Raoux ◽  
Damien Hoinard ◽  
Françoise Dromer ◽  
...  

ABSTRACT Mutations in two specific regions of the Fks1 subunit of 1,3-β-d-glucan synthase are known to confer decreased caspofungin susceptibility on Candida spp. Clinical isolates of Candida spp. (404 Candida albicans, 62 C. tropicalis, and 21 C. krusei isolates) sent to the French National Reference Center were prospectively screened for susceptibility to caspofungin in vitro by the broth microdilution reference method of the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing (AFST-EUCAST). Twenty-eight isolates (25 C. albicans, 2 C. tropicalis, and 1 C. krusei isolate) for which the caspofungin MIC was above the MIC that inhibited 90% of the isolates of the corresponding species (MIC90) were subjected to molecular analysis in order to identify mutations in the fks1 gene. Substitutions in the deduced protein sequence of Fks1 were found for 8 isolates, and 20 isolates had the wild-type sequence. Among the six C. albicans isolates harboring mutations, six patterns were observed involving amino acid changes at positions 641, 645, 649, and 1358. For C. tropicalis, one isolate showed an L644W mutation, and for one C. krusei isolate, two mutations, L658W and L701M, were found. Two media, RPMI medium and AM3, were tested for their abilities to distinguish between isolates with wild-type Fks1 and those with mutant Fks1. In RPMI medium, caspofungin MICs ranged from 0.25 to 2 μg/ml for wild-type isolates and from 1 to 8 μg/ml for mutant isolates. A sharper difference was observed in AM3: all wild-type isolates were inhibited by 0.25 μg/ml of caspofungin, while caspofungin MICs for all mutant isolates were ≥0.5 μg/ml. These data demonstrate that clinical isolates of C. albicans, C. tropicalis, and C. krusei with decreased susceptibility to caspofungin in vitro have diverse mutations in the fks1 gene and that AM3 is potentially a better medium than RPMI for distinguishing between mutant and wild-type isolates using the AFST-EUCAST method.


ACS Omega ◽  
2021 ◽  
Author(s):  
Armelle Novelli Rousseau ◽  
Nicolas Faure ◽  
Fabian Rol ◽  
Zohreh Sedaghat ◽  
Joël Le Galudec ◽  
...  

2020 ◽  
Vol 41 (S1) ◽  
pp. s42-s43
Author(s):  
Kimberley Sukhum ◽  
Candice Cass ◽  
Meghan Wallace ◽  
Caitlin Johnson ◽  
Steven Sax ◽  
...  

Background: Healthcare-associated infections caused by antibiotic-resistant organisms (AROs) are a major cause of significant morbidity and mortality. To create and optimize infection prevention strategies, it is crucial to delineate the role of the environment and clinical infections. Methods: Over a 14-month period, we collected environmental samples, patient feces, and patient bloodstream infection (BSI) isolates in a newly built bone marrow transplant (BMT) intensive care unit (ICU). Samples were collected from 13 high-touch areas in the patient room and 4 communal areas. Samples were collected from the old BMT ICU, in the new BMT ICU before patients moved in, and for 1 year after patients moved in. Selective microbiologic culture was used to isolate AROs, and whole-genome sequencing (WGS) was used to determine clonality. Antibiotic susceptibility testing was performed using Kirby-Bauer disk diffusion assays. Using linear mixed modeling, we compared ARO recovery across time and sample area. Results: AROs were collected and cultured from environmental samples, patient feces, and BSI isolates (Fig. 1a). AROs were found both before and after a patient entered the ICU (Fig. 1b). Sink drains had significantly more AROs recovered per sample than any other surface area (P < .001) (Fig. 1c). The most common ARO isolates were Pseudomonas aeruginosa and Stenotrophomonas maltophila (Fig. 1d). The new BMT ICU had fewer AROs recovered per sample than the old BMT ICU (P < .001) and no increase in AROs recovered over the first year of opening (P > .05). Furthermore, there was no difference before versus after patients moved into the hospital (P > .05). Antibiotic susceptibility testing reveal that P. aeruginosa isolates recovered from the old ICU were resistant to more antibiotics than isolates recovered from the new ICU (Fig. 2a). ANI and clonal analyses of P. aeruginosa revealed a large cluster of clonal isolates (34 of 76) (Fig. 2b). This clonal group included isolates found before patients moved into the BMT ICU and patient blood isolates. Furthermore, this clonal group was initially found in only 1 room in the BMT ICU, and over 26 weeks, it was found in sink drains in all 6 rooms sampled (Fig. 2b). Conclusions: AROs are present before patients move into a new BMT ICU, and sink drains act as a reservoir for AROs over time. Furthermore, sink-drain P. aeruginosa isolates are clonally related to isolates found in patient BSIs. Overall, these results provide insight into ARO transmission dynamics in the hospital environment.Funding: Research reported in this publication was supported by the Washington University Institute of Clinical and Translational Sciences grant UL1TR002345 from the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH.Disclosures: None


1976 ◽  
Vol 10 (3) ◽  
pp. 436-440 ◽  
Author(s):  
M. B. Coyle ◽  
M. F. Lampe ◽  
C. L. Aitken ◽  
P. Feigl ◽  
J. C. Sherris

2003 ◽  
Vol 127 (2) ◽  
pp. 224-226 ◽  
Author(s):  
Rebecca F. Yorke ◽  
Emilie Rouah

Abstract The identification of Nocardia transvalensis, an unusual and probably underrecognized cause of nocardial infection, is clinically significant because of this species' resistance to aminoglycosides, a standard antinocardial therapy. Diagnosis requires analytic methods available predominately in reference laboratories. We report a case of disseminated infection with N transvalensis with primary pulmonary involvement and subsequent development of brain abscesses, and review the literature to date. Familiarity with the epidemiology, pathologic findings, and clinical significance of this and other unusual Nocardia species may increase early identification and antibiotic susceptibility testing in cases of nocardial infection.


Sign in / Sign up

Export Citation Format

Share Document