microfluidic chamber
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 32)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xiaojuan Zhao ◽  
Dominic Alibhai ◽  
Tony G. Walsh ◽  
Nathalie Tarassova ◽  
Semra Z. Birol ◽  
...  

Platelets, small hemostatic blood cells, are derived from megakaryocytes, although the generation process is not clear. Only small numbers of platelets have been produced in systems outside the body, where bone marrow and lung are proposed as sites of platelet generation. Here we show that perfusion of megakaryocytes ex vivo through the mouse lung vasculature generates very large numbers of platelets, up to 3,000 per megakaryocyte. Despite their large size, megakaryocytes were able repeatedly to passage through the lung vasculature, leading to enucleation and fragmentation to generate platelets intravascularly. Using the ex vivo lung and a novel in vitro microfluidic chamber we determined the contributions of oxygenation, ventilation and endothelial cell health to platelet generation, and showed a critical role for the actin regulator TPM4.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mazen Erfan ◽  
Martine Gnambodoe-Capochichi ◽  
Yasser M. Sabry ◽  
Diaa Khalil ◽  
Yamin Leprince-Wang ◽  
...  

AbstractCo-integration of nanomaterials into microdevices poses several technological challenges and presents numerous scientific opportunities that have been addressed in this paper by integrating zinc oxide nanowires (ZnO-NWs) into a microfluidic chamber. In addition to the applications of these combined materials, this work focuses on the study of the growth dynamics and uniformity of nanomaterials in a tiny microfluidic reactor environment. A unique experimental platform was built through the integration of a noninvasive optical characterization technique with the microfluidic reactor. This platform allowed the unprecedented demonstration of time-resolved and spatially resolved monitoring of the in situ growth of NWs, in which the chemicals were continuously fed into the microfluidic reactor. The platform was also used to assess the uniformity of NWs grown quickly in a 10-mm-wide microchamber, which was intentionally chosen to be 20 times wider than those used in previous attempts because it can accommodate applications requiring a large surface of interaction while still taking advantage of submillimeter height. Further observations included the effects of varying the flow rate on the NW diameter and length in addition to a synergetic effect of continuous renewal of the growth solution and the confined environment of the chemical reaction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tatsuki Kunoh ◽  
Tatsuya Yamamoto ◽  
Shinya Sugimoto ◽  
Erika Ono ◽  
Nobuhiko Nomura ◽  
...  

Microorganisms are widely utilized for the treatment of wastewater in activated sludge systems. However, the uncontrolled growth of filamentous bacteria leads to bulking and adversely affects wastewater treatment efficiency. To clarify the nutrient requirements for filament formation, we track the growth of a filamentous bacterium, Leptothrix cholodnii SP-6 in different nutrient-limited conditions using a high aspect-ratio microfluidic chamber to follow cell-chain elongation and sheath formation. We find that limitations in Na+, K+, and Fe2+ yield no observable changes in the elongation of cell chains and sheath formation, whereas limitations of C, N, P, or vitamins lead to more pronounced changes in filament morphology; here we observe the appearance of partially empty filaments with wide intercellular gaps. We observe more dramatic differences when SP-6 cells are transferred to media lacking Mg2+ and Ca2+. Loss of Mg2+ results in cell autolysis, while removal of Ca2+ results in the catastrophic disintegration of the filaments. By simultaneously limiting both carbon and Ca2+ sources, we are able to stimulate planktonic cell generation. These findings paint a detailed picture of the ecophysiology of Leptothrix, which may lead to improved control over the unchecked growth of deleterious filamentous bacteria in water purification systems.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 694
Author(s):  
Hezhi Hu ◽  
Jingmeng Cheng ◽  
Chunyang Wei ◽  
Shanshan Li ◽  
Chengzhuang Yu ◽  
...  

Droplet digital polymerase chain reaction (ddPCR) suffers from the need for specific equipment and skilled personnel; thus, we here present a chamber-based digital PCR microfluidic device that is compatible with fluorescence image read-out systems and removes bubbles by a pre-degassed microfluidic device that consists of a pilot channel and micro chamber arrays. Digitalized PCR reagents are introduced into micro chambers, and thermocycles are taken to perform a DNA amplification process. Then, fluorescence images of a micro chamber array are read out and analyzed to obtain the total number of positive chambers. Thereby, the copy numbers of target DNA are calculated for quantitative detections. As a validation, this device is evaluated by the application of meat authentication. We performed dPCR tests using DNA templates extracted from a pure mutton DNA template with different dilutions. Then, the dPCR chip was used to identify the meat authentication using mutton–chicken mixtures with different mass ratios, showing its performance in real biotechnical applications.


Langmuir ◽  
2021 ◽  
Author(s):  
Koichiro Asano ◽  
Pierre Didier ◽  
Kohei Ohshiro ◽  
Nicolas Lobato-Dauzier ◽  
Anthony J. Genot ◽  
...  

2021 ◽  
Author(s):  
Sokratis A. Apostolidis ◽  
Amrita Sarkar ◽  
Heather M. Giannini ◽  
Rishi R. Goel ◽  
Divij Mathew ◽  
...  

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibit higher basal levels of activation measured by P-selectin surface expression, and have a poor functional reserve upon in vitro stimulation. Correlating clinical features to the ability of plasma from COVID-19 patients to stimulate control platelets identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions, thus identifying these potentially actionable pathways as central for platelet activation and/or vascular complications in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect. These studies have implications for the role of platelet hyperactivation in complications associated with SARS-CoV-2 infection.


2021 ◽  
Vol 1912 (1) ◽  
pp. 012021
Author(s):  
I Anshori ◽  
S Harimurti ◽  
M S Hartono ◽  
R R Althof ◽  
L N Rizalputri ◽  
...  

2021 ◽  
Author(s):  
Ivana Jokić

Adsorption-based microfluidic sensors are promising tools for biosensing. Advanced mathematical models of time response and noise of such devices are needed in order to improve the interpretation of measurement results, and to achieve the optimal sensor performance. Here the mathematical models are presented that take into account the coupling of processes that generate the sensor signal: adsorption–desorption (AD) of the target analyte particles on the heterogeneous sensing surface, and mass transfer (MT) in a microfluidic chamber. The response kinetics and AD noise (which determines the ultimate sensing performance) of protein biosensors are analyzed, assuming practically relevant analyte concentrations, sensing surface areas and MT parameters. The condition is determined under which MT significantly influences the sensor characteristics relevant for reliable analyte detection and quantification. It is shown that the development of improved mathematical models of sensor temporal response and noise can be used as one of strategies for achieving better sensing performance.


Sign in / Sign up

Export Citation Format

Share Document