scholarly journals Antiviral and resistance studies of AG1343, an orally bioavailable inhibitor of human immunodeficiency virus protease.

1996 ◽  
Vol 40 (2) ◽  
pp. 292-297 ◽  
Author(s):  
A K Patick ◽  
H Mo ◽  
M Markowitz ◽  
K Appelt ◽  
B Wu ◽  
...  

AG1343 ([3S-(3R*,4aR*,8aR*,2'S*,3'S*)]-2-[2' hydroxy-3'-phenylthiomethyl-4'-aza-5'-oxo-5'-(2''-methyl-3''-hydro xy-phenyl) pentyl]-decahydroiso-quinoline-3-N-t-butylcarboxamide methanesulfonic acid) is a selective, nonpeptidic inhibitor of human immunodeficiency virus (HIV) protease (Ki = 2 nM) that was discovered by protein structure-based drug design methodologies. AG1343 was effective against the replication of several laboratory and clinical HIV type 1 (HIV-1) or HIV-2 isolates including pyridinone- and zidovudine-resistant strains, with 50% effective concentrations ranging from 9 to 60 nM. In reversibility studies, inhibition of gag (p55) proteolytic processing in HIV-1 particles from cells treated with AG1343 was maintained for up to 36 h after drug removal. The ability of virus to develop resistance to AG1343 was studied by serial passage of HIV-1 NL4.3 in the presence of increasing concentrations of drug. After 28 passages, a variant with a 30-fold reduction in susceptibility to AG1343 was isolated. Molecular analysis of the protease from this variant indicated a double change from a Met to Ile at residue 46 and an Ile to Val or Ala at residue 84 (M46I+I84V, A). Consistent with these findings, reductions in susceptibility were observed for recombinant viruses constructed to contain the single I84V change or the double M46I+I84V substitutions. Resistance, however, was not detected for recombinant viruses containing other key mutations in HIV-1 protease, including a Val to Ile change at residue 32 or a Val to Ala or Phe at residue 82. The potent anti-HIV activity of AG1343 against several isolates suggests that AG1343 should perform well during ongoing human phase II clinical trials.

2002 ◽  
Vol 46 (4) ◽  
pp. 982-990 ◽  
Author(s):  
Jan Münch ◽  
Ludger Ständker ◽  
Stefan Pöhlmann ◽  
Frédéric Baribaud ◽  
Armin Papkalla ◽  
...  

ABSTRACT Proteolytic processing of the abundant plasmatic human CC chemokine 1 (HCC-1) generates a truncated form, HCC-1[9-74], which is a potent agonist of CCR1, CCR3, and CCR5; promotes calcium influx and chemotaxis of T lymphoblasts, monocytes, and eosinophils; and inhibits infection by CCR5-tropic human immunodeficiency virus type 1 (HIV-1) isolates. In the present study we demonstrate that HCC-1[9-74] interacts with the second external loop of CCR5 and inhibits replication of CCR5-tropic HIV-1 strains in both primary T cells and monocyte-derived macrophages. Low concentrations of the chemokine, however, frequently enhanced the replication of CCR5-tropic HIV-1 isolates but not the replication of X4-tropic HIV-1 isolates. Only HCC-1[9-74] and HCC-1[10-74], but not other HCC-1 length variants, displayed potent anti-HIV-1 activities. Fluorescence-activated cell sorter analysis revealed that HCC-1[9-74] caused up to 75% down-regulation of CCR5 cell surface expression, whereas RANTES (regulated on activation, normal T-cell expressed and secreted) achieved a reduction of only about 40%. Studies performed with green fluorescent protein-tagged CCR5 confirmed that both HCC-1[9-74] and RANTES, but not full-length HCC-1, mediated specific internalization of the CCR5 HIV-1 entry cofactor. Our results demonstrate that the interaction with HCC-1[9-74] causes effective intracellular sequestration of CCR5, but they also indicate that the effect of HCC-1[9-74] on viral replication is subject to marked cell donor- and HIV-1 isolate-dependent variations.


2009 ◽  
Vol 90 (11) ◽  
pp. 2777-2787 ◽  
Author(s):  
Claudia Muratori ◽  
Eliana Ruggiero ◽  
Antonella Sistigu ◽  
Roberta Bona ◽  
Maurizio Federico

Sexual transmission is now the most frequent means of diffusion of human immunodeficiency virus type 1 (HIV-1). Even if the underlying mechanism is still largely unknown, there is a consensus regarding the key role played by mucosal dendritic cells (DCs) in capturing HIV through contact with infected subepithelial lymphocytes, and their capacity to spread HIV by trans-infection. We found that HIV protease inhibitors (PIs) reduced virion endocytosis strongly in monocyte-derived immature (i) DCs contacting HIV-1-infected cells, and that this phenomenon led to dramatically impaired trans-infection activity. This inhibitory effect was not mediated by the block of viral protease activity, as it was also operative when donor cells were infected with a PI-resistant HIV-1 strain. The block of virus maturation imposed by PIs did not correlate with significant variations in the levels of virus expression in donor cells or of Gag/Env virion incorporation. Also, PIs did not affect the endocytosis activity of DCs. In contrast, we noticed that PI treatment inhibited the formation of cell–cell conjugates whilst reducing the expression of ICAM-1 in target iDCs. Our results contribute to a better delineation of the mechanisms underlying HIV-1 trans-infection activity in DCs, whilst having implications for the development of new anti-HIV microbicide strategies.


1996 ◽  
Vol 40 (10) ◽  
pp. 2404-2409 ◽  
Author(s):  
C A Boucher ◽  
W Keulen ◽  
T van Bommel ◽  
M Nijhuis ◽  
D de Jong ◽  
...  

A simple approach for the determination of drug susceptibilities by using human immunodeficiency virus type 1 (HIV-1) RNA from the sera of patients is described. HIV-1 RNA was extracted from patient sera, and the 5' part of the reverse transcriptase (RT) gene was transcribed into DNA and amplified in a nested PCR. The amplified fragment covers the 3' part of the protease gene and amino acids 1 to 304 of the RT gene. This fragment can be introduced through homologous recombination, as described previously, into a novel HIV-1 reference strain (pHXB2 delta 2-261RT) from which amino acids 2 to 261 of RT have been deleted. The resulting recombinant virus expresses all properties of the HXB2 reference strain except for those encoded by the introduced part of the patient RT gene. Recombinant viruses were subsequently tested for drug susceptibility in a microtiter format killing assay [3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay] as well as in the standard HeLa CD4+ plaque reduction assay. Similar susceptibility profiles were obtained by each assay with recombinant viruses derived from patients receiving alternating nevirapine and zidovudine treatment or lamivudine-zidovudine combination therapy. In conclusion, this approach enables high-through-put determination of the drug susceptibilities of serum RNA-derived RT genes, independent of the patient's viral background, and generates the possibility of relating changes in susceptibility to changes in viral genotypes.


2012 ◽  
Vol 93 (12) ◽  
pp. 2625-2634 ◽  
Author(s):  
Elena Capel ◽  
Glòria Martrus ◽  
Mariona Parera ◽  
Bonaventura Clotet ◽  
Miguel Angel Martínez

The rapid spread of human immunodeficiency virus type 1 (HIV-1) in humans has been accompanied by continuous extensive genetic diversification of the virus. The aim of this study was to investigate the impact of HIV-1 diversification on HIV-1 replication capacity (RC) and mutational robustness. Thirty-three HIV-1 protease sequences were amplified from three groups of viruses: two naïve sample groups isolated 15 years apart plus a third group of protease inhibitor-(PI) resistant samples. The amplified proteases were recombined with an HXB2 infectious clone and RC was determined in MT-4 cells. RC was also measured in these three groups after random mutagenesis in vitro using error-prone PCR. No significant RC differences were observed between recombinant viruses from either early or recent naïve isolates (P = 0.5729), even though the proteases from the recent isolates had significantly lower sequence conservation scores compared with a subtype B ancestral sequence (P<0.0001). Randomly mutated recombinant viruses from the three groups exhibited significantly lower RC values than the corresponding wild-type viruses (P<0.0001). There was no significant difference regarding viral infectivity reduction between viruses carrying randomly mutated naïve proteases from early or recent sample isolates (P = 0.8035). Interestingly, a significantly greater loss of RC was observed in the PI-resistant protease group (P = 0.0400). These results demonstrate that protease sequence diversification has not affected HIV-1 RC or protease robustness and indicate that proteases carrying PI resistance substitutions are less robust than naïve proteases.


2001 ◽  
Vol 75 (8) ◽  
pp. 3568-3580 ◽  
Author(s):  
Julio Martı́n ◽  
Celia C. LaBranche ◽  
Francisco González-Scarano

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infects and induces syncytium formation in microglial cells from the central nervous system (CNS). A primary isolate (HIV-1BORI) was sequentially passaged in cultured microglia, and the isolate recovered (HIV-1BORI-15) showed high levels of fusion and replicated more efficiently in microglia (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. González-Scarano, J. Virol. 70:7654–7662, 1996). The parent and adapted viruses used CCR5 as coreceptor. Recombinant viruses demonstrated that the syncytium-inducing phenotype was associated with four amino acid differences in the V1/V2 region of the viral gp120 (J. T. C. Shieh, J. Martin, G. Baltuch, M. H. Malim, and F. González-Scarano, J. Virol. 74:693–701, 2000). We produced luciferase-reporter, env-pseudotyped viruses using plasmids containing env sequences from HIV-1BORI, HIV-1BORI-15, and the V1/V2 region of HIV-1BORI-15 in the context of HIV-1BORI env (named rBORI, rB15, and rV1V2, respectively). The pseudotypes were used to infect cells expressing various amounts of CD4 and CCR5 on the surface. In contrast to the parent recombinant, the rB15 and rV1V2 pseudotypes retained their infectability in cells expressing low levels of CD4 independent of the levels of CCR5, and they infected cells expressing CD4 with a chimeric coreceptor containing the third extracellular loop of CCR2b in the context of CCR5 or a CCR5 Δ4 amino-terminal deletion mutant. The VH-rB15 and VH-rV1V2 recombinant viruses were more sensitive to neutralization by a panel of HIV-positive sera than was VH-rBORI. Interestingly, the CD4-induced 17b epitope on gp120 was more accessible in the rB15 and rV1V2 pseudotypes than in rBORI, even before CD4 binding, and concomitantly, the rB15 and rV1V2 pseudotypes were more sensitive to neutralization with the human 17b monoclonal antibody. Adaptation to growth in microglia—cells that have reduced expression of CD4 in comparison with other cell types—appears to be associated with changes in gp120 that modify its ability to utilize CD4 and CCR5. Changes in the availability of the 17b epitope indicate that these affect conformation. These results imply that the process of adaptation to certain tissue types such as the CNS directly affects the interaction of HIV-1 envelope glycoproteins with cell surface components and with humoral immune responses.


2006 ◽  
Vol 51 (2) ◽  
pp. 604-610 ◽  
Author(s):  
Michel Ntemgwa ◽  
Bluma G. Brenner ◽  
Maureen Oliveira ◽  
Daniela Moisi ◽  
Mark A. Wainberg

ABSTRACT Human immunodeficiency virus type 2 (HIV-2) contains numerous natural polymorphisms in its protease (PR) gene that are implicated in drug resistance in the case of HIV-1. This study evaluated emergent PR resistance in HIV-2. Three HIV-2 isolates were selected for resistance to amprenavir (APV), nelfinavir (NFV), indinavir (IDV), and tipranavir (TPV) in cell culture. Genotypic analysis determined the time to the appearance of protease inhibitor (PI)-associated mutations compared to HIV-1. Phenotypic drug susceptibility assays were used to determine the levels of drug resistance. Within 10 to 15 weeks of serial passage, three major mutations—I54M, I82F, and L90M—arose in HIV-2 viral cultures exposed to APV, NFV, and IDV, whereas I82L was selected with TPV. After 25 weeks, other cultures had developed I50V and I84V mutations. In contrast, no major PI mutations were selected in HIV-1 over this period except for D30N in the context of NFV selective pressure. The baseline phenotypes of wild-type HIV-2 isolates were in the range observed for HIV-1, except for APV and NFV for which a lower degree of sensitivity was seen. The acquisition of the I54M, I84V, L90M, and L99F mutations resulted in multi-PI-resistant viruses, conferring 10-fold to more than 100-fold resistance. Of note, we observed a 62A/99F mutational motif that conferred high-level resistance to PIs, as well as novel secondary mutations, including 6F, 12A, and 21K. Thus, natural polymorphisms in HIV-2 may facilitate the selection of PI resistance. The increasing incidence of such polymorphisms in drug-naive HIV-1- and HIV-2-infected persons is of concern.


2012 ◽  
Vol 87 (3) ◽  
pp. 1884-1889 ◽  
Author(s):  
Hillel Haim ◽  
Ignacio Salas ◽  
Joseph Sodroski

ABSTRACTThe mature envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) virions is derived by proteolytic cleavage of a trimeric gp160 glycoprotein precursor. Remarkably, proteolytic processing of the HIV-1 Env precursor results in changes in Env antigenicity that resemble those associated with glutaraldehyde fixation. Apparently, proteolytic processing of the HIV-1 Env precursor decreases conformational flexibility of the Env trimeric complex, differentially affecting the integrity/accessibility of epitopes for neutralizing and nonneutralizing antibodies.


2004 ◽  
Vol 78 (9) ◽  
pp. 4628-4637 ◽  
Author(s):  
Jing Lu ◽  
Prakash Sista ◽  
Françoise Giguel ◽  
Michael Greenberg ◽  
Daniel R. Kuritzkes

ABSTRACT Resistance to enfuvirtide (ENF; T-20), a fusion inhibitor of human immunodeficiency virus type 1 (HIV-1), is conferred by mutations in the first heptad repeat of the gp41 ectodomain. The replicative fitness of recombinant viruses carrying ENF resistance mutations was studied in growth competition assays. ENF resistance mutations, selected in vitro or in vivo, were introduced into the env gene of HIV-1NL4-3 by site-directed mutagenesis and expressed in HIV-1 recombinants carrying sequence tags in nef. The doubling time of ENF-resistant viruses was highly correlated with decreasing ENF susceptibility (R 2 = 0.859; P < 0.001). Initial fitness experiments focused on mutants identified by in vitro selection in the presence of ENF (L. T. Rimsky, D. C. Shugars, and T. J. Matthews, J. Virol. 72:986-993, 1998). In the absence of drug, these mutants displayed reduced fitness compared to wild-type virus with a relative order of fitness of wild type > I37T > V38 M > D36S/V38 M; this order was reversed in the presence of ENF. Likewise, recombinant viruses carrying ENF resistance mutations selected in vivo displayed reduced fitness in the absence of ENF with a relative order of wild type > N42T > V38A > N42T/N43K ≈ N42T/N43S > V38A/N42D ≈ V38A/N42T. Fitness and ENF susceptibility were inversely correlated (r = −0.988; P < 0.001). Similar results were obtained with recombinants expressing molecularly cloned full-length env genes obtained from patient-derived HIV-1 isolates before and after ENF treatment. Further studies are needed to determine whether the reduced fitness of ENF-resistant viruses alters their pathogenicity in vivo.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850031
Author(s):  
M. Divya ◽  
M. Pitchaimani

In this paper, we have studied about the sensitivity analysis of the human immunodeficiency virus (HIV) protease inhibitor (PI) model and estimated the length of the delay. We have fabricated an HIV PI model accompanied with humoral immunity. Stability analysis of the constructed model about its steady states has been deliberated. We have evaluated some numerical simulations for PI model with humoral immunity by using the existing patient data.


2001 ◽  
Vol 75 (19) ◽  
pp. 9156-9164 ◽  
Author(s):  
M. Shehu-Xhilaga ◽  
H. G. Kraeusslich ◽  
S. Pettit ◽  
R. Swanstrom ◽  
J. Y. Lee ◽  
...  

ABSTRACT Differences in virion RNA dimer stability between mature and protease-defective (immature) forms of human immunodeficiency virus type 1 (HIV-1) suggest that maturation of the viral RNA dimer is regulated by the proteolytic processing of the HIV-1 Gag and Gag-Pol precursor proteins. However, the proteolytic processing of these proteins occurs in several steps denoted primary, secondary, and tertiary cleavage events and, to date, the processing step associated with formation of stable HIV-1 RNA dimers has not been identified. We show here that a mutation in the primary cleavage site (p2/nucleocapsid [NC]) hinders formation of stable virion RNA dimers, while dimer stability is unaffected by mutations in the secondary (matrix/capsid [CA], p1/p6) or a tertiary cleavage site (CA/p2). By introducing mutations in a shared cleavage site of either Gag or Gag-Pol, we also show that the cleavage of the p2/NC site in Gag is more important for dimer formation and stability than p2/NC cleavage in Gag-Pol. Electron microscopy analysis of viral particles shows that mutations in the primary cleavage site in Gag but not in Gag-Pol inhibit viral particle maturation. We conclude that virion RNA dimer maturation is dependent on proteolytic processing of the primary cleavage site and is associated with virion core formation.


Sign in / Sign up

Export Citation Format

Share Document