scholarly journals A PCR-oligonucleotide ligation assay to determine the prevalence of 23S rRNA gene mutations in clarithromycin-resistant Helicobacter pylori.

1997 ◽  
Vol 41 (3) ◽  
pp. 712-714 ◽  
Author(s):  
G G Stone ◽  
D Shortridge ◽  
J Versalovic ◽  
J Beyer ◽  
R K Flamm ◽  
...  

We have developed a rapid PCR-oligonucleotide ligation assay that can discriminate single base substitutions that are associated with clarithromycin resistance in Helicobacter pylori. Susceptible isolates were wild type at positions 2143 and 2144 (cognate to 2058 and 2059 in Escherichia coli), while 93% of the resistant isolates contained A-to-G mutations at either position and 7% of the isolates contained A-to-C mutations at position 2143. In addition, the MIC for 86% of the resistant isolates with an A2143 mutation was > or = 64 micrograms per ml, and that for 89% of the resistant isolates with an A2144 mutation was < or = 32 micrograms per ml.

1998 ◽  
Vol 36 (9) ◽  
pp. 2730-2731 ◽  
Author(s):  
Ge Wang ◽  
Qin Jiang ◽  
Diane E. Taylor

Clarithromycin-susceptible and clarithromycin-resistantHelicobacter pylori isolates from the same patient were investigated for the mode of development and mechanism of clarithromycin resistance. The clarithromycin-resistant strain UA1182 harbors homozygous A-to-G mutations at position 2143 in both copies of the 23S rRNA gene and has a phenotype of resistance to clarithromycin and clindamycin but no significant resistance to streptogramin B. Pulsed-field gel electrophoresis patterns of NruI- andNotI-digested genomic DNA from the Clas and Clar isolates demonstrated that they are genetically distinct, suggesting that the development of clarithromycin resistance is not from the mutation of the existing Clas strain but from a completely new strain.


Author(s):  
Marcelo L Ribeiro ◽  
Lea Vitiello ◽  
Maira CB Miranda ◽  
Yune HB Benvengo ◽  
Anita PO Godoy ◽  
...  

2002 ◽  
Vol 46 (12) ◽  
pp. 3765-3769 ◽  
Author(s):  
Carla Fontana ◽  
Marco Favaro ◽  
Silvia Minelli ◽  
Anna Angela Criscuolo ◽  
Antonio Pietroiusti ◽  
...  

ABSTRACT Resistance of Helicobacter pylori to clarithromycin occurs with a prevalence ranging from 0 to 15%. This has an important clinical impact on dual and triple therapies, in which clarithromycin seems to be the better choice to achieve H. pylori eradication. In order to evaluate the possibility of new mechanisms of clarithromycin resistance, a PCR assay that amplified a portion of 23S rRNA from H. pylori isolates was used. Gastric tissue biopsy specimens from 230 consecutive patients were cultured for H. pylori isolation. Eighty-six gastric biopsy specimens yielded H. pylori-positive results, and among these 12 isolates were clarithromycin resistant. The latter were studied to detect mutations in the 23S rRNA gene. Sequence analysis of the 1,143-bp PCR product (portion of the 23S rRNA gene) did not reveal mutation such as that described at position 2142 to 2143. On the contrary, our findings show, for seven isolates, a T-to-C transition at position 2717. This mutation conferred a low level of resistance, equivalent to the MIC for the isolates, selected using the E-test as well as using the agar dilution method: 1 μg/ml. Moreover, T2717C transition is located in a highly conserved region of the 23S RNA associated with functional sites: domain VI. This fact has a strong effect on the secondary structure of the 23S RNA and on its interaction with macrolide. Mutation at position 2717 also generated an HhaI restriction site; therefore, restriction analysis of the PCR product also permits a rapid detection of resistant isolates.


2018 ◽  
Vol 27 (3) ◽  
pp. 13-20
Author(s):  
Hayam E. Rashed ◽  
Marwa A. Mansour ◽  
Mostafa A. Soltan ◽  
Tarek I. Zahir ◽  
Yasmin A. Fahmy

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Jina Vazirzadeh ◽  
Jamal Falahi ◽  
Sharareh Moghim ◽  
Tahmineh Narimani ◽  
Rahmatollah Rafiei ◽  
...  

Background and Aims. Helicobacter pylori is a common infectious bacterium mostly found in gastroduodenal diseases. The increased prevalence of clarithromycin-resistant H. pylori strains is a major challenge in the successful treatment of infections caused by this organism. The present study is aimed at detecting the clarithromycin resistance pattern of H. pylori strains isolated from gastric biopsies and evaluating point mutations of the 23S rRNA gene. Patients and methods. In the present descriptive cross-sectional study, 165 patients with gastrointestinal disorders, who were referred to the Endoscopy Center of Dr. Shariati Hospital of Isfahan, Iran, were enrolled from April to July 2018. H. pylori infection was diagnosed by culture, and susceptibility of the isolates to clarithromycin was assessed by the E-test. Minimum inhibitory concentration (MIC) values were obtained based on EUCAST recommendations. Also, fluorescence in situ hybridization (FISH) was used to determine point mutations associated with clarithromycin resistance. Results. By using culturing, H. pylori was isolated from 50.3% (83/165) gastric biopsy specimens. The overall frequency of resistance to clarithromycin was 25.3% (21/83) by the E-test. In the resistance genotypic analysis, 19 isolates had mutations. The prevalence of A2143G and A2144G mutations was 68.4% (13/19) and 31.5% (6/19), respectively. A2143C mutation was not tracked in any isolate. Two isolates with MIC>0.5 μg/mL had no mutations that could be related to other mechanisms of resistance. Conclusion. As presented in the study, the high prevalence of clarithromycin-resistant H. pylori due to point mutations of the 23S rRNA gene indicates the necessity of revising the standard treatment regimen based on antibiotic susceptibility pattern of each region.


Sign in / Sign up

Export Citation Format

Share Document