Annals of Clinical Microbiology and Antimicrobials
Latest Publications


TOTAL DOCUMENTS

706
(FIVE YEARS 190)

H-INDEX

39
(FIVE YEARS 10)

Published By Springer (Biomed Central Ltd.)

1476-0711, 1476-0711

Author(s):  
Behnam Sisakhtpour ◽  
Arezoo Mirzaei ◽  
Vajihe Karbasizadeh ◽  
Nafiseh Hosseini ◽  
Mehdi Shabani ◽  
...  

Abstract Background Widespread misuse of antibiotics caused bacterial resistance increasingly become a serious threat. Bacteriophage therapy promises alternative treatment strategies for combatting drug-resistant bacterial infections. In this study, we isolated and characterized a novel, potent lytic bacteriophage against multi-drug resistant (MDR) Acinetobacter baumannii and described the lytic capability and endolysin activity of the phage to evaluate the potential in phage therapy. Methods A novel phage, pIsf-AB02, was isolated from hospital sewage. The morphological analysis, its host range, growth characteristics, stability under various conditions, genomic restriction pattern were systematically investigated. The protein pattern of the phage was analyzed, and the endolysin activity of the phage was determined under the non-denaturing condition on SDS-PAGE. The optimal lytic titer of phage was assessed by co-culture of the phage with clinical MDR A. baumannii isolates. Finally, HeLa cells were used to examine the safety of the phage. Results The morphological analysis revealed that the pIsf-AB02 phage displays morphology resembling the Myoviridae family. It can quickly destroy 56.3% (27/48) of clinical MDR A. baumannii isolates. This virulent phage could decrease the bacterial host cells (from 108 CFU/ml to 103 CFU/ml) in 30 min. The optimum stability of the phage was observed at 37 °C. pH 7 is the most suitable condition to maintain phage stability. The 15 kDa protein encoded by pIsf-AB02 was detected to have endolysin activity. pIsf-AB02 did not show cytotoxicity to HeLa cells, and it can save HeLa cells from A. baumannii infection. Conclusion In this study, we isolated a novel lytic MDR A. baumannii bacteriophage, pIsf-AB02. This phage showed suitable stability at different temperatures and pHs, and demonstrated potent in vitro endolysin activity. pIsf-AB02 may be a good candidate as a therapeutic agent to control nosocomial infections caused by MDR A. baumannii.


Author(s):  
Andreas Enz ◽  
Silke Müller ◽  
Wolfram Mittelmeier ◽  
Annett Klinder

Abstract Background Periprosthetic fungal infections are considered rare and opportunistic infections. Treatment is difficult, and established standards do not yet exist. The choice of the appropriate antifungal drug might affect the patient outcome. Cases All the three cases presented showed polybacterial recurrent infection of the revision hip arthroplasty. All patients were of younger age, had multiple revisions of the endoprosthesis, each had a large partial femoral replacement greater than 40% of the femoral length, gentamycin-loaded cement, and a long anchoring distance of the used intramedullary stem. Due to the severe life-threatening infection with deep osteomyelitis, an amputation had to be performed. However, despite surgical intervention, the fungal dominated infection persisted. Finally, only the use of caspofungin allowed permanent infection control. Conclusion The polybacterial infection is driven by the symbiosis between fungi and bacteria. Therefore, eradication of the fungus is required to achieve elimination of the bacteria. Antimycotics of the echinocandin-class, such as caspofungin, may be considered as initial treatment.


Author(s):  
Jing Peng ◽  
Ming Ni ◽  
Dunfeng Du ◽  
Yanjun Lu ◽  
Juan Song ◽  
...  

Abstract Background Solid transplant patients are susceptible to Pneumocystis jirovecii pneumonia (PJP). While the vast majority of PJP cases occur within the first 6 months after transplantation, very few PJP cases are seen beyond 1 year post-transplantation (late-onset PJP). PJP and coronavirus disease 2019 (COVID-19, caused by infection with SARS-CoV-2) share quite a few common clinical manifestations and imaging findings, making the diagnosis of PJP often underappreciated during the current COVID-19 pandemic. To date, only 1 case of kidney transplantation who developed COVID-19 and late-onset PJP has been reported, but this patient also suffered from many other infections and died from respiratory failure and multiple organ dysfunction syndrome. A successful treatment of kidney patients with COVID-19 and late-onset PJP has not been reported. Case presentation We present a case of a 55-year-old male kidney transplant patient with COVID-19 who also developed late-onset PJP. He received a combined treatment strategy, including specific anti-pneumocystis therapy, symptomatic supportive therapy, adjusted immunosuppressive therapy, and use of antiviral drugs/antibiotics, ending with a favorable outcome. Conclusions This case highlights the importance of prompt and differential diagnosis of PJP in kidney transplant patients with SARS-CoV-2 infection. Further studies are required to clarify if kidney transplant patients with COVID-19 could be prone to develop late-onset PJP and how these patients should be treated.


Author(s):  
Yusri Taha ◽  
Hayley Wardle ◽  
Adam B. Evans ◽  
Ewan R. Hunter ◽  
Helen Marr ◽  
...  

Abstract Background There is growing evidence that antibody responses play a role in the resolution of SARS-CoV-2 infection. Patients with primary or secondary antibody deficiency are at increased risk of persistent infection. This challenging clinical scenario is associated with adverse patient outcome and potentially creates an ecological niche for the evolution of novel SARS-CoV-2 variants with immune evasion capacity. Case reports and/or series have implied a therapeutic role for convalescent plasma (CP) to secure virological clearance, although concerns have been raised about the effectiveness of CP and its potential to drive viral evolution, and it has largely been withdrawn from clinical use in the UK. Case presentation We report two cases in which persistent SARS-CoV-2 infection was cleared following administration of the monoclonal antibody combination casirivimab and imdevimab (REGN-COV2, Ronapreve). A 55-year-old male with follicular lymphoma, treated with B cell depleting therapy, developed SARS-CoV-2 infection in September 2020 which then persisted for over 200 days. He was hospitalised on four occasions with COVID-19 and suffered debilitating fatigue and malaise throughout. There was no clinical response to antiviral therapy with remdesivir or CP, and SARS-CoV-2 was consistently detected in nasopharyngeal swabs. Intrahost evolution of several spike variants of uncertain significance was identified by viral sequence analysis. Delivery of REGN-COV2, in combination with remdesivir, was associated with clinical improvement and viral clearance within 6 days, which was sustained for over 150 days despite immunotherapy for relapsed follicular lymphoma. The second case, a 68-year-old female with chronic lymphocytic leukaemia on ibrutinib, also developed persistent SARS-CoV-2 infection. Despite a lack of response to remdesivir, infection promptly cleared following REGN-COV2 in combination with remdesivir, accompanied by resolution of inflammation and full clinical recovery that has been maintained for over 290 days. Conclusions These cases highlight the potential benefit of REGN-COV2 as therapy for persistent SARS-CoV-2 infection in antibody deficient individuals, including after failure of CP treatment. Formal clinical studies are warranted to assess the effectiveness of REGN-COV2 in antibody-deficient patients, especially in light of the emergence of variants of concern, such as Omicron, that appear to evade REGN-COV2 neutralisation.


Author(s):  
Darrel Ornelle Elion Assiana ◽  
Jabar Babatunde Pacôme Achimi Abdul ◽  
Laure Stella Ghoma Linguissi ◽  
Micheska Epola ◽  
Jeannhey Christevy Vouvoungui ◽  
...  

Abstract Background There is paucity of data on the prevalence and distribution of multidrug- Resistant-Tuberculosis (MDR-TB) in the Republic of Congo. Among the challenges resides the implementation of a robust TB resistance diagnostic program using molecular tools. In resource limited settings there is a need to gather data to enable prioritization of actions. The objective of this study was is to implement molecular tools as a best of diagnosing MDR and XDR-TB among presumptive tuberculosis patients referred to reference hospital of Makelekele in Brazzaville, Republic of the Congo. Methods We have conducted a cross-sectional study, including a total of 92 presumptive pulmonary tuberculosis patients and who had never received treatment recruited at the reference hospital of Makelekele from October 2018 to October 2019. The socio-demographic and clinical data were collected as well as sputum samples. Rifampicin resistance was investigated using Xpert (Cepheid) and second-line TB drugs Susceptibility testing were performed by the Brucker HAIN Line Probe Assay (GenoType MTBDRsl VER 2.0 assay) method. Results From the 92 recruited patients, 57 (62%) were found positive for the Mycobacterium tuberculosis complex. The prevalence of rifampicin-resistant tuberculosis (RR-TB) was 9.8% (9/92) and importantly 2.2% were pre-XDR/XDR. Conclusion This study showed a high rate of rifampicin resistance and the presence of extensively drug-resistant tuberculosis in the study area in new patients. This study highlights the need for further studies of TB drug resistance in the country.


Author(s):  
Yingcheng Qin ◽  
Xiaonv Duan ◽  
Yuan Peng ◽  
Yongyu Rui

Abstract Background BlaAFM-1 (GenBank Accession No. 143105.1) is a new B1 subclass metallo-β-lactamase gene discovered by our group, and isolated from an Alcaligenes faecalis plasmid that renders carbapenem antibiotics ineffective. In this study, we generated a fast and reliable assay for blaAFM-1 detection. Methods We designed optimum loop-mediated isothermal amplification (LAMP) primers and constructed a recombinant plasmid AFM-1 to specifically detect blaAFM-1. Optimal LAMP primers were used to assess sensitivity of the recombinant plasmid AFM-1 and blaAFM-1-supplemented samples (simulated sputum and simulated feces). Fifty two samples, without blaAFM-1, were used to assess LAMP real-time assay specificity; these samples were verified by conventional PCR and sequencing for the absence of blaAFM-1. Three hundred clinical Gram-negative carbapenem-resistant strains were tested by LAMP assay for strains carrying blaAFM-1, which were confirmed by conventional PCR and Sanger sequencing. We calculated the sensitivity and its 95% confidence interval (95% CI), specificity and its 95% CI, and predictive values of the LAMP assay and conventional PCR/sequencing by investigating positive and negative clinical strains. Results The lowest limit of detection for the recombinant plasmid AFM-1 and blaAFM-1-supplemented samples (in both simulated sputum and simulated feces) was 101 copies/reaction. All amplification curves of the 52 blaAFM-1-free bacteria strains were negative, suggesting the LAMP assay had excellent specificity for detecting blaAFM-1. Among the 300 clinical strains, eight were positive for blaAFM-1 using LAMP. These LAMP results were consistent with conventional PCR and Sanger sequencing data. As with conventional PCR/sequencing, the LAMP method exhibits 100% sensitivity (95% CI 59.8–100%) and 100% specificity (95% CI 98.4–100%) for blaAFM-1 detection. The LAMP assay is also time-efficient (1 h) for blaAFM-1 detection. Conclusions We established a new LAMP assay with high sensitivity and specificity to detect the novel B1-β-lactamase gene, blaAFM-1.


Author(s):  
Katarzyna Piekarska ◽  
Katarzyna Zacharczuk ◽  
Tomasz Wołkowicz ◽  
Mateusz Mokrzyś ◽  
Natalia Wolaniuk ◽  
...  

Abstract Background Transrectal ultrasound-guided prostate biopsy (TRUS-Bx) is considered an essential urological procedure for the histological diagnosis of prostate cancer. It is, however, considered a “contaminated” procedure which may lead to infectious complications. Recent studies suggest a significant share of fluoroquinolone-resistant rectal flora in post-biopsy infections. Methods The molecular mechanisms of fluoroquinolone resistance, including PMQR (plasmid-mediated quinolone resistance) as well as mutation in the QRDRs (quinolone-resistance determining regions) of gyrA, gyrB, parC and parE, among Enterobacterales isolated from 32 of 48 men undergoing a prostate biopsy between November 2015 and April 2016 were investigated. Before the TRUS-Bx procedure, all the patients received an oral antibiotic containing fluoroquinolones. Results In total, 41 Enterobacterales isolates were obtained from rectal swabs. The MIC of ciprofloxacin and the presence of common PMQR determinants were investigated in all the isolates. Nine (21.9%) isolates carried PMQR with qnrS as the only PMQR agent detected. DNA sequencing of the QRDRs in 18 Enterobacterales (E. coli n = 17 and E. cloacae n = 1) isolates with ciprofloxacin MIC ≥ 0.25 mg/l were performed. Substitutions in the following codons were found: GyrA—83 [Ser → Leu, Phe] and 87 [Asp → Asn]; GyrB codon—605 [Met → Leu], ParC codons—80 [Ser → Ile, Arg] and 84 [Glu → Gly, Met, Val, Lys], ParE codons—458 [Ser → Ala], 461 [Glu → Ala] and 512 [Ala → Thr]. Six isolates with ciprofloxacin MIC ≥ 2 mg/l had at least one mutation in GyrA together with qnrS. Conclusions This study provides information on the common presence of PMQRs among Enterobacterales isolates with ciprofloxacin MIC ≥ 0.25 mg/l, obtained from men undergoing TRUS-Bx. This fact may partially explain why some men develop post-TRUS-Bx infections despite ciprofloxacin prophylaxis.


Author(s):  
Mackingsley Kushan Dassanayake ◽  
Teng-Jin Khoo ◽  
Jia An

Abstract Background and objectives The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. Methods Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. Findings A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. Conclusion Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.


Author(s):  
Shirley Chiu Wai Chan ◽  
Ho Yin Chung ◽  
Chak Sing Lau ◽  
Philip Hei Li

Abstract Background Pneumocystis jiroveci pneumonia (PJP) is an opportunistic infection affecting immunocompromised individuals. However, evidence regarding the burden and effectiveness of prophylaxis among rheumatic patients remains limited. Delineating the epidemiology and efficacy of prophylaxis among rheumatic patients is urgently needed. Methods We performed a territory-wide cohort study of rheumatic patients in Hong Kong. All patients with a diagnosis of anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV), immune-mediated myositis (IMM), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), or spondyloarthritis (SpA) between 2015 and 2019 were included. Prevalence, frequency of prophylaxis and mortality of PJP were calculated. Number needed to treat (NNT) analysis was also performed. Results Out of 21,587 patients (54% RA, 25% SLE, 13% SpA, 5% IMM, 2% AAV and 1% SSc), 1141 (5.3%) patients were prescribed PJP prophylaxis. 48/21,587 (0.2%) developed PJP. No patients who developed PJP received prophylaxis prior to infection. The incidence of PJP was highest among SSc, AAV, and IMM patients. Among these diseases, the majority of PJP occurred while patients were on glucocorticoids at daily prednisolone-equivalent doses of 15 mg/day (P15) or above. PJP prophylaxis was effective with NNT for SSc, AAV and IIM being 36, 48 and 114 respectively. There were 19 PJP-related mortalities and the mortality rate was 39.6%. Conclusion PJP is an uncommon but important infection among rheumatic patients, PJP prophylaxis is effective and should be considered in patients with SSc, AAV and IMM, especially those receiving glucocorticoid doses above P15.


Sign in / Sign up

Export Citation Format

Share Document