scholarly journals In vitro activity of Bay 12-8039, a new 8-methoxyquinolone, compared to the activities of 11 other oral antimicrobial agents against 390 aerobic and anaerobic bacteria isolated from human and animal bite wound skin and soft tissue infections in humans.

1997 ◽  
Vol 41 (7) ◽  
pp. 1552-1557 ◽  
Author(s):  
E J Goldstein ◽  
D M Citron ◽  
M Hudspeth ◽  
S Hunt Gerardo ◽  
C V Merriam

The in vitro activity of Bay 12-8039, a new oral 8-methoxyquinolone, was compared to the activities of 11 other oral antimicrobial agents (ciprofloxacin, levofloxacin, ofloxacin, sparfloxacin, azithromycin, clarithromycin, amoxicillin clavulanate, penicillin, cefuroxime, cefpodoxime, and doxycycline) against 250 aerobic and 140 anaerobic bacteria recently isolated from animal and human bite wound infections. Bay 12-8039 was active against all aerobic isolates, both gram-positive and gram-negative isolates, at < or = 1.0 microg/ml (MICs at which 90% of isolates are inhibited [MIC90s < or = 0.25 microg/ml) and was active against most anaerobes at < or = 0.5 microg/ml; the exceptions were Fusobacterium nucleatum and other Fusobacterium species (MIC90s, > or = 4.0 microg/ml) and one strain of Prevotella loeschii (MICs, 2.0 microg/ml). In comparison, the other quinolones tested had similar in vitro activities against the aerobic strains but were less active against the anaerobes, including peptostreptococci, Porphyromonas species, and Prevotella species. The fusobacteria were relatively resistant to all the antimicrobial agents tested except penicillin G (one penicillinase-producing strain of F. nucleatum was found) and amoxicillin clavulanate.

1997 ◽  
Vol 41 (1) ◽  
pp. 101-106 ◽  
Author(s):  
J M Woodcock ◽  
J M Andrews ◽  
F J Boswell ◽  
N P Brenwald ◽  
R Wise

The in vitro activity of BAY 12-8039, a new fluoroquinolone, was studied in comparison with those of ciprofloxacin, trovafloxacin (CP 99,219), cefpodoxime, and amoxicillin-clavulanate against gram-negative, gram-positive, and anaerobic bacteria. Its activity against mycobacteria and chlamydia was also investigated. BAY 12-8039 was active against members of the family Enterobacteriaceae (MIC at which 90% of strains tested were inhibited [MIC90S] < or = 1 microgram/ml, except for Serratia spp. MIC90 2 microgram/ml), Neisseria spp. (MIC90S, 0.015 microgram/ml), Haemophilus influenzae (MIC90, 0.03 microgram/ml), and Moraxella catarrhalis (MIC90, 0.12 micrgram/ml), and these results were comparable to those obtained for ciprofloxacin and trovafloxacin. Against Pseudomonas aeruginosa, the quinolones were more active than the beta-lactam agents but BAY 12-8039 was less active than ciprofloxacin. Strains of Stenotrophomonas maltophilia were fourfold more susceptible to BAY 12-8039 and trovafloxacin (MIC90S, 2 micrograms/ml) than to ciprofloxacin. BAY 12-8039 was as active as trovafloxacin but more active than ciprofloxacin against Streptococcus pneumoniae (MIC90, 0.25 microgram/ml) and methicillin-susceptible Staphylococcus auerus (MIC90S, 0.12 micrograms/ml). The activity of BAY 12-8039 against methicillin-resistant S. aureus (MIC90, 2 micrograms/ml) was lower than that against methicillin-susceptible strains. BAY 12-8039 was active against anaerobes (MIC90S < or = 2 micrograms/ml), being three- to fourfold more active against Bacteroides fragilis, Prevotella spp., and Clostridium difficile than was ciprofloxacin. Against Mycobacterium tuberculosis, BAY 12-8039 exhibited activity comparable to that of rifampin (MICs < or = 0.5 micrograms/ml). Against Chlamydia trachomatis and Chlamydia pneumoniae BAY 12-8039 was more active (MICs < or = 0.12 microgram/ml) than either ciprofloxacin or erythromycin and exhibited a greater lethal effect than either to these two agents. The protein binding of BAY 12-8039 was determined at 1 and 5 micrograms/ml as 30 and 26.4%, respectively. The presence of human serum (at 20 or 70%) had no marked effect on the in vitro activity of BAY 12-8039.


Sign in / Sign up

Export Citation Format

Share Document