scholarly journals Comparison of the in vitro activities of the echinocandin LY303366, the pneumocandin MK-0991, and fluconazole against Candida species and Cryptococcus neoformans.

1997 ◽  
Vol 41 (9) ◽  
pp. 1957-1960 ◽  
Author(s):  
T V Krishnarao ◽  
J N Galgiani

Two new glucan synthesis inhibitors, the echinocandin LY303366 and the pneumocandin MK-0991 (formerly L-743,872), were studied for their antifungal activities in vitro in relation to each other and in relation to the activity of the triazole fluconazole. Systematic analysis of broth macrodilution testing by varying the starting inoculum size, medium composition, medium pH, temperature of incubation, length of incubation, or selection of endpoints failed to identify significant differences in antifungal activity for either LY303366 or MK-0991 in comparison to the activity under standard test conditions specified for other antifungal agents in National Committee for Clinical Laboratory Standards (NCCLS) document M27A. Under standardized conditions, both drugs exhibited prominent activity against Candida species including Candida glabrata and Candida krusei but showed little activity against Cryptococcus neoformans. This spectrum of activity differed from that of fluconazole, which exhibited marginal activity against C. glabrata and C. krusei but prominent activity against other Candida species and C. neoformans. For individual strains, broth microdilution MICs of LY303366 and MK-0991 were similar to but frequently higher than broth macrodilution results. In contrast, fluconazole broth microdilution MICs were often lower than broth microdilution results. We conclude that the test conditions specified in NCCLS document M27A are applicable to these two new glucan synthesis inhibitors and that systematic differences between broth microdilution procedures and the broth macrodilution reference standard will need to be addressed before the two test methods can be used interchangeably.

1997 ◽  
Vol 41 (1) ◽  
pp. 180-183 ◽  
Author(s):  
J N Galgiani ◽  
M L Lewis

We investigated the effects of various assay conditions on the activities of two antifungal drugs, SCH56592 and itraconazole, against seven species of fungi by the broth macrodilution testing procedure proposed by the National Committee for Clinical Laboratory Standards (NCCLS). For both drugs, which are insoluble in water, the concentration and type of solubilizing agent produced differences in drug activity. Starting inoculum size differences from 10(2) to 10(5) yeast cells per ml resulted in approximately a fourfold effect on the MIC of both drugs, but other significant differences were not observed with variations in synthetic medium composition, pH, buffering reagent, or incubation temperature. Under standardized conditions of reference method M27-T with 1% polyethylene glycol as the solubilizing agent, median MICs of SCH56592 and itraconazole of 60 and 125 mg/ml, respectively, were demonstrated for 110 strains (12 to 23 strains for each of seven species). Broth microdilution results were typically severalfold higher than broth macrodilution results. We conclude that the NCCLS standard reference method can be applied without modification to the testing of SCH56592 and itraconazole, but particular attention to solubilizing the agents is critical to obtaining consistent results.


2002 ◽  
Vol 46 (11) ◽  
pp. 3394-3400 ◽  
Author(s):  
David van Duin ◽  
Arturo Casadevall ◽  
Joshua D. Nosanchuk

ABSTRACT The fungal pathogens Cryptococcus neoformans and Histoplasma capsulatum produce melanin-like pigments in the presence of l-dopa in vitro and during mammalian infection. We investigated whether melanization affected the susceptibilities of the fungi to amphotericin B, caspofungin, fluconazole, itraconazole, or flucytosine (5FC). Using the standard macrodilution MIC protocol (the M27A protocol) of the National Committee for Clinical Laboratory Standards for yeast, we found no difference in the susceptibilities of melanized and nonmelanized C. neoformans and H. capsulatum isolates. Killing assays demonstrated that melanization reduced the susceptibilities of both fungi to amphotericin B and caspofungin. Laccase-deficient C. neoformans cells grown with l-dopa were significantly more susceptible than congenic melanin-producing yeast to killing by amphotericin B or caspofungin. Preincubation of amphotericin B or caspofungin with melanins decreased their antifungal activities. Elemental analysis of melanins incubated with amphotericin B or caspofungin revealed an alteration in the C:N ratios of the melanins, which indicated binding of these drugs by the melanins. In contrast, incubation of fluconazole, itraconazole, or 5FC with melanins did not significantly affect the antifungal efficacies of the drugs or the chemical composition of the melanins. The results suggest a potential explanation for the inefficacy of caspofungin against C. neoformans in vivo, despite activity in vitro. Furthermore, the results indicate that fungal melanins protect C. neoformans and H. capsulatum from the activities of amphotericin B and caspofungin and that this protection is not demonstrable by standard broth macrodilution assays.


1998 ◽  
Vol 36 (4) ◽  
pp. 926-930 ◽  
Author(s):  
Kate G. Davey ◽  
Ann D. Holmes ◽  
Elizabeth M. Johnson ◽  
Adrien Szekely ◽  
David W. Warnock

The FUNGITEST method (Sanofi Diagnostics Pasteur, Paris, France) is a microplate-based procedure for the breakpoint testing of six antifungal agents (amphotericin B, flucytosine, fluconazole, itraconazole, ketoconazole, and miconazole). We compared the FUNGITEST method with a broth microdilution test, performed according to National Committee for Clinical Laboratory Standards document M27-A guidelines, for determining the in vitro susceptibilities of 180 isolates ofCandida spp. (50 C. albicans, 50C. glabrata, 10 C. kefyr, 20C. krusei, 10 C. lusitaniae, 20C. parapsilosis, and 20 C. tropicalisisolates) and 20 isolates of Cryptococcus neoformans. Overall, there was 100% agreement between the methods for amphotericin B, 95% agreement for flucytosine, 84% agreement for miconazole, 83% agreement for itraconazole, 77% agreement for ketoconazole, and 76% agreement for fluconazole. The overall agreement between the methods exceeded 80% for all species tested with the exception ofC. glabrata (71% agreement). The poorest agreement between the results for individual agents was seen with C. glabrata (38% for fluconazole, 44% for ketoconazole, and 56% for itraconazole) and C. tropicalis (50% for miconazole). The FUNGITEST method misclassified as susceptible 2 of 12 (16.6%) fluconazole-resistant isolates, 2 of 10 (20%) itraconazole-resistant isolates, and 4 of 8 (50%) ketoconazole-resistant isolates of several Candida spp. Further development of the FUNGITEST procedure will be required before it can be recommended as an alternative method for the susceptibility testing of Candida spp. or C. neoformans.


2000 ◽  
Vol 44 (1) ◽  
pp. 226-229 ◽  
Author(s):  
Francesco Barchiesi ◽  
Daniela Arzeni ◽  
Annette W. Fothergill ◽  
Luigi Falconi Di Francesco ◽  
Francesca Caselli ◽  
...  

ABSTRACT A broth microdilution method performed in accordance with the National Committee for Clinical Laboratory Standards guidelines was used to compare the in vitro activity of the new antifungal triazole SCH 56592 (SCH) to that of fluconazole (FLC), itraconazole (ITC), and ketoconazole (KETO) against 257 clinical yeast isolates. They included 220 isolates belonging to 12 different species of Candida, 15 isolates each of Cryptococcus neoformans andSaccharomyces cerevisiae, and seven isolates ofRhodotorula rubra. The MICs of SCH at which 50% (MIC50) and 90% (MIC90) of the isolates were inhibited were 0.06 and 2.0 μg/ml, respectively. In general, SCH was considerably more active than FLC (MIC50 and MIC90 of 1.0 and 64 μg/ml, respectively) and slightly more active than either ITC (MIC50 and MIC90 of 0.25 and 2.0 μg/ml, respectively) and KETO (MIC50 and MIC90 of 0.125 and 4.0 μg/ml, respectively). Our in vitro data suggest that SCH has significant potential for clinical development.


2000 ◽  
Vol 44 (9) ◽  
pp. 2435-2441 ◽  
Author(s):  
Francesco Barchiesi ◽  
Anna M. Schimizzi ◽  
Francesca Caselli ◽  
Andrea Novelli ◽  
Stefania Fallani ◽  
...  

ABSTRACT The interaction of amphotericin B (AmB) and azole antifungal agents in the treatment of fungal infections is still a controversial issue. A checkerboard titration broth microdilution-based method that adhered to the recommendations of the National Committee for Clinical Laboratory Standards was applied to study the in vitro interactions of AmB with fluconazole (FLC), itraconazole (ITC), and the new investigational triazole SCH 56592 (SCH) against 15 clinical isolates ofCryptococcus neoformans. Synergy, defined as a fractional inhibitory concentration (FIC) index of ≤0.50, was observed for 7% of the isolates in studies of the interactions of both FLC-AmB and ITC-AmB and for 33% of the isolates in studies of the SCH-AmB interactions; additivism (FICs, >0.50 to 1.0) was observed for 67, 73, and 53% of the isolates in studies of the FLC-AmB, ITC-AmB, and SCH-AmB interactions, respectively; indifference (FICs, >1.0 to ≤2.0) was observed for 26, 20, and 14% of the isolates in studies of the FLC-AmB, ITC-AmB, and SCH-AmB interactions, respectively. Antagonism (FIC >2.0) was not observed. When synergy was not achieved, there was still a decrease, although not as dramatic, in the MIC of one or both drugs when they were used in combination. To investigate the effects of FLC-AmB combination therapy in vivo, we established an experimental model of systemic cryptococcosis in BALB/c mice by intravenous injection of cells of C. neoformans 2337, a clinical isolate belonging to serotype D against which the combination of FLC and AmB yielded an additive interaction in vitro. Both survival and tissue burden studies showed that combination therapy was more effective than FLC alone and that combination therapy was at least as effective as AmB given as a single drug. On the other hand, when cells of C. neoformans 2337 were grown in FLC-containing medium, a pronounced increase in resistance to subsequent exposures to AmB was observed. In particular, killing experiments conducted with nonreplicating cells showed that preexposure to FLC abolished the fungicidal activity of the polyene. However, this apparent antagonism was not observed in vivo. Rather, when the two drugs were used sequentially for the treatment of systemic murine cryptococcosis, a reciprocal potentiation was often observed. Our study shows that (i) the combination of triazoles and AmB is significantly more active than either drug alone against C. neoformans in vitro and (ii) the concomitant or sequential use of FLC and AmB for the treatment of systemic murine cryptococcosis results in a positive interaction.


2002 ◽  
Vol 46 (5) ◽  
pp. 1583-1585 ◽  
Author(s):  
Gloria M. González ◽  
Rolando Tijerina ◽  
Deanna A. Sutton ◽  
John R. Graybill ◽  
Michael G. Rinaldi

ABSTRACT We investigated the susceptibilities of hyphal, mixed hyphal, ungerminated arthroconidial, and germinated arthroconidial populations of Coccidioides immitis to lipid formulations of amphotericin B and nystatin and their conventional preparations, utilizing the National Committee for Clinical Laboratory Standards M38-P broth macrodilution method. The differences in effects of the three different growth stages of the saprobic phase of C. immitis on the MIC/minimum lethal concentration (MLC) ratio were not statistically significant for any of the antifungal agents tested. These results suggest that either inocula could be used for in vitro susceptibility studies with C. immitis.


2006 ◽  
Vol 50 (4) ◽  
pp. 1287-1292 ◽  
Author(s):  
Benjamin J. Park ◽  
Beth A. Arthington-Skaggs ◽  
Rana A. Hajjeh ◽  
Naureen Iqbal ◽  
Meral A. Ciblak ◽  
...  

ABSTRACT One hundred seven Candida bloodstream isolates (51 C. albicans, 24 C. glabrata, 13 C. parapsilosis, 13 C. tropicalis, 2 C. dubliniensis, 2 C. krusei, and 2 C. lusitaniae strains) from patients treated with amphotericin B alone underwent in vitro susceptibility testing against amphotericin B using five different methods. Fifty-four isolates were from patients who failed treatment, defined as death 7 to 14 days after the incident candidemia episode, having persistent fever of ≥5 days' duration after the date of the incident candidemia, or the recurrence of fever after two consecutive afebrile days while on antifungal treatment. MICs were determined by using the Clinical Laboratory Standards Institute (formally National Committee for Clinical Laboratory Standards) broth microdilution procedure with two media and by using Etest. Minimum fungicidal concentrations (MFCs) were also measured in two media. Broth microdilution tests with RPMI 1640 medium generated a restricted range of MICs (0.125 to 1 μg/ml); the corresponding MFC values ranged from 0.5 to 4 μg/ml. Broth microdilution tests with antibiotic medium 3 produced a broader distribution of MIC and MFC results (0.015 to 0.25 μg/ml and 0.06 to 2 μg/ml, respectively). Etest produced the widest distribution of MICs (0.094 to 2 μg/ml). However, none of the test formats studied generated results that significantly correlated with therapeutic success or failure.


1998 ◽  
Vol 36 (1) ◽  
pp. 198-202 ◽  
Author(s):  
Ana Espinel-Ingroff

The in vitro antifungal activity of a new triazole derivative, voriconazole, was compared with those of itraconazole and amphotericin B against 67 isolates of Aspergillus flavus,Aspergillus fumigatus, Bipolaris spp.,Fusarium oxysporum, Fusarium solani,Pseudallescheria boydii, Rhizopus arrhizus,Blastomyces dermatitidis, Histoplasma capsulatum, and Sporothrix schenckii. The in vitro activities of voriconazole were also compared with those of amphotericin B, fluconazole, and itraconazole against 189 isolates of emerging and common yeast pathogens of Blastoschizomyces capitatus, Candida (13 species), Cryptococcus neoformans, Hansenula anomala, Rhodotorula rubra, Saccharomyces cerevisiae, Sporobolomyces salmonicolor, and Trichosporon beigelii. MICs were determined according to a procedure under evaluation by the National Committee for Clinical Laboratory Standards (NCCLS) for broth microdilution testing of filamentous fungi and by the NCCLS M27-A broth microdilution method for yeasts. The in vitro activities of voriconazole were similar to or better than those of itraconazole and amphotericin B against Aspergillus spp.,Fusarium spp., and P. boydii as well as againstB. dermatitidis and H. capsulatum. The activities of voriconazole were also comparable to or better than those of amphotericin B, fluconazole, and itraconazole against most species of yeasts tested. Exceptions were certain isolates of R. rubra and S. salmonicolor. These results suggest that voriconazole has a wide spectrum of activity in vitro; its effectiveness in the treatment of human mycoses is under evaluation in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document