glucan synthesis
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 26)

H-INDEX

48
(FIVE YEARS 6)

2021 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Tao Sun ◽  
Yixuan Zhang ◽  
Hao Jiang ◽  
Kai Yang ◽  
Shiyu Wang ◽  
...  

Naematelia aurantialba is a rare edible fungus with both nutritional and medicinal values and especially rich in bioactive polysaccharides. However, due to the lack of genomic information, researches on the mining of active compounds, artificial breeding and cultivation, genetics, and molecular biology are limited. To facilitate the medicinal and food applications of N. aurantialba, we sequenced and analyzed the whole genome of N. aurantialba for the first time. The 21-Mb genome contained 15 contigs, and a total of 5860 protein-coding genes were predicted. The genome sequence shows that 296 genes are related to polysaccharide synthesis, including 15 genes related to nucleoside-activated sugar synthesis and 11 genes related to glucan synthesis. The genome also contains genes and gene clusters for the synthesis of other active substances, including terpenoids, unsaturated fatty acids, and bioactive proteins. In addition, it was also found that N. aurantialba was more closely related to Naematelia encephala than to Tremella fuciformis. In short, this study provides a reference for molecular cognition of N. aurantialba and related researches.


2021 ◽  
Author(s):  
Alessandra da Silva Dantas ◽  
Filomena Nogueira ◽  
Keunsook K. Lee ◽  
Louise A. Walker ◽  
Matt Edmondson ◽  
...  

Echinocandins such as caspofungin are front line antifungal drugs that compromise β-1,3 glucan synthesis in the cell wall. Recent reports have shown that fungal cells can resist killing by caspofungin by up-regulation of chitin synthesis, thereby sustaining cell wall integrity. When echinocandins are removed, the chitin content of cells quickly returns to basal levels, suggesting that there is a fitness cost associated with having elevated levels of chitin in the cell wall. We show here that simultaneous activation of the calcineurin and CWI pathways generates a sub-population of Candida albicans yeast cells that have supra-normal chitin levels interspersed throughout the inner and outer cell wall, and that these cells are non-viable, perhaps due to loss of wall elasticity required for cell expansion and growth. Mutations in the Ca2+-calcineurin pathway prevented the formation of these non-viable super high chitin cells by negatively regulating chitin synthesis driven by the CWI pathway. The Ca2+-calcineurin pathway may therefore act as an attenuator that prevents the overproduction of chitin by coordinating both chitin upregulation and negative regulation of the CWI signaling pathway.


Author(s):  
Alia Rizvi Syeda Kazim ◽  
Yuting Jiang ◽  
Shengnan Li ◽  
Xiaoxiao He

Short α-1,4-glucan was suggested as the primer structure for α-glucan synthesis. However, the exact structure and its source remain elusive.


2021 ◽  
Vol 190 ◽  
pp. 106327
Author(s):  
Shinsuke Nerome ◽  
Naoki Yokota ◽  
Yoshihiro Ojima ◽  
Masayuki Azuma

2021 ◽  
Author(s):  
Honghai Zhu ◽  
Wei Hu ◽  
Yuxia Li ◽  
Jie Zou ◽  
Jiaqi He ◽  
...  

The formation of cotton fiber strength largely relies on continuous and steady sucrose supply to cellulose synthesis and is greatly impaired by drought. However, the effects of drought on sucrose import into fiber and its involvement in cellulose biosynthesis within fiber remain unclear. To end this, moisture deficiency experiments were conducted using two Gossypium hirsutum cultivars of Dexiamian 1 (drought-tolerant) and Yuzaomian 9110 (drought-sensitive). Fiber strength was significantly decreased under drought. The results of 13C isotope labeling indicated that drought notably reduced sucrose efflux from cottonseed coat to fiber, and this was caused by down-regulation of sucrose transporter genes (GhSWEET10 and GhSWEET15) in the outer cottonseed coat, finally leading to decreased sucrose accumulation in fiber. Further, under drought, the balance of sucrose allocation within fiber was disrupted by increasing the flow of sucrose into β-1,3-glucan synthesis and lignin synthesis but hindering that into cellulose synthesis in both cultivars. Additionally, glycolysis and starch synthesis were specifically enhanced by drought in Yuzaomian 9110, which further reduced the flow of sucrose into cellulose synthesis. Under drought, the cellulose deposition was decreased due to promoted cellulose degrading process in Dexiamian 1 and stunted cellulose synthesis in Yuzaomian 9110. Consequently, reduced cellulose content was measured in drought-stressed fibers for both cultivars. In summary, the inhibited cellulose accumulation caused by drought was mainly due to reduced sucrose translocation from the outer cottonseed coat to fiber, and less sucrose partitioned to cellulose synthesis pathway under the condition of intensified competition for sucrose by different metabolic pathways within fiber, finally degrading the fiber strength.


2021 ◽  
Vol 9 (7) ◽  
pp. 1390
Author(s):  
Masafumi Noda ◽  
Naho Sugihara ◽  
Yoshimi Sugimoto ◽  
Ikue Hayashi ◽  
Sachiko Sugimoto ◽  
...  

Cariogenic bacteria, such as Streptococcus (S.) mutans and S. sobrinus, produce insoluble and sticky glucans as a biofilm material. The present study demonstrates that a lactic acid bacterium (LAB) named BM53-1 produces a substance that inhibits the sticky glucan synthesis. The BM53-1 strain was isolated from a flower of Actinidia polygama and identified as Lactobacillus reuteri. The substance that inhibits sticky glucan synthesis does not exhibit antibacterial activity against S. mutans. The cariogenic S. mutans produces glucans under the control of three glucosyltransferase (GTF) enzymes, named GtfB, GtfC, and GtfD. Although GtfB and GtfC produce insoluble glucans, GtfD forms soluble glucans. Through quantitative reverse-transcriptional (qRT)-PCR analysis, it was revealed that the BM53-1-derived glucan-production inhibitor (GI) enhances the transcriptions of gtfB and gtfC genes 2- to 7-fold at the early stage of cultivation. However, that of gtfD was not enhanced in the presence of the GI, indicating that the glucan stickiness produced by S. mutans was significantly weaker in the presence of the GI. Our result demonstrates that Lb. reuteri BM53-1 is useful to prevent dental caries.


2021 ◽  
Vol 32 ◽  
pp. 127661
Author(s):  
James M. Apgar ◽  
Robert R. Wilkening ◽  
Dann L. Parker ◽  
Dongfang Meng ◽  
Kenneth J. Wildonger ◽  
...  

2020 ◽  
Vol 10 (22) ◽  
pp. 8297
Author(s):  
Promise M. Emeka ◽  
Lorina I. Badger-Emeka ◽  
Hairul-Islam M. Ibrahim ◽  
Krishnaraj Thirugnanasambantham ◽  
Jamal Hussen

Glucansucrase secreted by Streptococcus mutans and composed of virulence genes alters oral microbiota, creating adherent environment for structural bacteria colony forming dental biofilm. The present investigation studied the inhibitory and binding potentials of mangiferin against S. mutans and its enzyme glucansucrase implicated in biofilm formation. Antibacterial activity against planktonic S. mutans was carried out. Using reverse transcription PCR, the expression of crucial virulence genes, gtfB, gtfC, gtfD, gbpB, and comDE were determined. The effect of mangiferin on teeth surfaces biofilm was ascertained by scanning electron microscopy (SEM). Docking analysis of S. mutans glucansucrase and mangiferin revealed the binding energy of −7.35 and ten hydrogen interactions. Antibacterial study revealed that mangiferin was not lethal to planktonic S. mutans, but a concentration-dependent inhibition of glucansucrase activity was observed. The inhibitory effect of water-insoluble glucan synthesis was apparently more marked relative to water-soluble glucan synthesis attenuation. Mangiferin significantly downregulated the expression of the virulence genes, indicating a mechanism involving glucanotranferases, specifically inhibiting colony formation by attenuating bacterial adherence. SEM images revealed that S. mutans biofilm density was scanty in mangiferin treated teeth compared to non-treated control teeth. Our data therefore suggest that mangiferin inhibited S. mutans biofilms formation by attenuating glucansucrase activities without affecting bacteria growth.


2020 ◽  
Author(s):  
Jing Zhang ◽  
Lin Yan ◽  
Minxuan Liu ◽  
Ganggang Guo ◽  
Bing Wu

Abstract Background and Aims Oat (Avena sativa) has human health benefits when consumed as a whole-grain food, attributed to the high content of (1,3;1,4)-β-d-glucan (mixed-linkage glucan [MLG]), but little is known about the synthase genes and synthesis mechanism of MLG polysaccharides in this species. Methods The concentration of oat MLGs under different light intensities was measured by a standard enzymatic approach and further verified by immunoelectron microscopy. The effect of light intensity on MLG synthase genes was examined by RT–qPCR and western blot analyses. The pattern of expression directed by the promoter of the oat MLG synthase gene was also investigated by histochemical β-glucuronidase (GUS) analysis. Key Results The oat orthologues of genes implicated in the synthesis of MLG in other cereals, including cellulose synthase-like (Csl) F, H and J gene families, were defined. Transcript profiling of these genes across oat tissues indicated that AsCslF6 transcripts dominated. Under high light intensities, the expression of AsCslF6, a major isoform of the MLG synthase genes, increased to >30 % of the dark growth control. The amount of MLG in oat rose from 0.07 to 1.06 % with increased light intensity. Histochemical tests showed that the AsCslF6 gene promoter preferentially directs GUS expression under high light intensity conditions. Conclusions Oat MLG synthesis is regulated by light. High light intensity upregulates the expression of the MLG synthase AsCslF6 gene, leading to an increase in the amount of MLG in oat leaves.


Sign in / Sign up

Export Citation Format

Share Document